首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This aim of the current study is to evaluate the performance and emission characteristics of pumpkin seed oil with diesel at different blended ratios (B10-CR15, B20-CR15, B10-CR18 and B20-CR18) in a constant speed (1500?rpm) engine. The tests were conducted at various loads of the engine and with specific compression ratios of 15 and 18. The performance and emissions were compared with the different blend ratios and compression ratios. As a result of which the higher compression ratios shows better performance and emission than the lower compression ratio; among them B20-CR18 shows better results such that CO2, HC and CO emissions were reduced and there is a slight increase in NOX value compared to diesel and other blend ratios and also there is an increased brake thermal efficiency for the blend B20-CR18. This shows that the optimum blend is chosen from the results is identified as B20-CR18, which has better performance and emission than other blends and compression ratios.  相似文献   

2.
ABSTRACT

The limitations and ramifications of petroleum fuel on the present environmental society raised the necessity of alternative fuel. The physicochemical properties of biodiesel and its ability to reduce emissions have engaged the attention of researchers to prefer biodiesel as a better alternative fuel. A modification in engine parameters is proven to be one of the best techniques to obtain comparable results with diesel. The following study emphasises TSME 20 (20% Tamarind Seed Methyl Ester with 80% diesel) as an alternative fuel and its performance and emission characteristics are deciphered at different injection timings (19°, 23° and 27° bTDC) at different loads. Focusing on the results obtained at full-load condition, considerable improvement in brake thermal efficiency by 3.18% was noticed with the significant reduction in carbon monoxide, hydrocarbon, oxides of nitrogen and smoke by 17.3%, 57.3%, 31.34% and 8.1%, respectively, at retarded injection timing compared to standard injection timing.  相似文献   

3.
ABSTRACT

In the agriculture and transportation sector, many bio-seed based biofuels have exposed to be a better replacement for fuels derivative from fossil fuels. In the Indian context, due to the energy needs, agricultural growth, surrounding degradation and rural development these biofuels have achieved an acknowledgment as an alternative. Biofuels derived from the bio seeds such as rubber seed oil, cottonseed oil, jatropha and rapeseed oil etc. can hold the carbon emissions from vehicles in an efficient and economical method. In this research paper, an attempt has been made with blends from bio-seed based Sapindus seed oil with nano additive as an alternative for diesel. Its performance and emission characteristics were investigated on the constant speed single cylinder CI engine and results were compared.  相似文献   

4.
Energy utilisation from renewable sources plays a vital role in meeting the demands of a clean environment. Commercialisation of biodiesel is comparatively less than that of other alternative sources due to its suitability and yield. This paper is focused on performance and emission characteristics of neem oil biodiesel and cotton seed oil biodiesel blended with cerium oxide as an additive. The blending proportion was B10, B20, B30, B40 and 100% diesel. The testing was performed in a single-cylinder diesel engine coupled with an exhaust gas analyser. The performance characteristics were obtained in between the brake power with specific fuel consumption and emission characteristics such as carbon monoxide, carbon dioxide and other gases. It was observed that the combination of B20 proportion with CeO2 blend produces effect results with other blends in specific fuel consumption and reduced emission behaviour.  相似文献   

5.
The paper reports an attempt to test the feasibility of Jatropha methyl ester as a fuel in the engine fuel of a compression ignition engine (C.I.) with turbulence inducements in the combustion chamber. The inefficient mixing of biodiesel oils with air contributes to incomplete combustion. These problems can be eliminated by enhancing in‐cylinder turbulence by providing two holes on the piston crown (internal jet piston) and esterification of the vegetable oil into biodiesel. The performance characteristics revealed that the brake thermal efficiency of the Jatropha methyl ester with an internal jet piston was higher than with a base engine piston. The internal jet piston operation with Jatropha methyl ester exhibited desirable characteristics for other emissions such as lower carbon monoxide (CO), hydrocarbons (HCs) and smoke. The oxides of nitrogen (NOx) emissions were higher for the internal jet piston with increasing load, compared to the base engine piston.  相似文献   

6.
ABSTRACT

Bioalcohols have recently become one of the promising alternate fuels. Lower alcohols exhibit some problems like phase separation, stability issues, storage problems, corrosion etc. Hence, the addition of higher alcohols is regarded least-problematic and the concept of using higher alcohols as fuel blends is relatively new. In this article, the effects of the addition of higher alcohol (1-pentanol) on engine performance and emission characteristics are discussed. Two reference fuels (diesel and biodiesel derived from waste cooking oil) and two test fuels (blends of 20% of 1-pentanol and 80% of either diesel or biodiesel) are tested in a single cylinder compression ignition diesel engine for six load conditions (0, 4, 8, 12, 16, and 20?kg) at a constant speed of 1200?rpm. The engine performance and emission characteristics are determined and discussed.  相似文献   

7.
An experimental study is conducted to evaluate the use of rubber seed oil with diesel at a proportion of 20% by volume (RSO20) in a constant speed (1500?rpm) direct injected four-stroke air-cooled single-cylinder compression ignition engine at different injection timings (24°, 27°, 30°, 33° bTDC (before top dead centre)). A series of tests were conducted at various engine load conditions at the rated power of 5.9?kW. The injection pressure was maintained at 200?bar. As a result of investigations, at the full load condition, the brake thermal efficiency of RSO20 at 30° bTDC is high compared with other injection timings and brake energy fuel consumption is increased when advancing injection timing. There is a significant reduction in unburned hydrocarbon emission and carbon monoxide emission, and the oxides of nitrogen emission (NOx) is increased when advancing the injection timing.  相似文献   

8.
ABSTRACT

The present experimental work is focused on the use of Taguchi method to evaluate the optimum intake parameters to obtain the enhanced engine performance characteristics of diesel engine fuelled with TSME 20 (80% diesel and 20% Tamarind seed methyl ester) biodiesel blend. Injection pressure (IP), injection timing (IT) and exhaust gas recirculation (EGR) were considered as input parameters and each parameter at three levels. Brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), hydrocarbon (HC), oxides of nitrogen (NOX) and smoke opacity (SO) were chosen as performance parameters. In this study, Taguchi L27 orthogonal array (OA) was considered. Taguchi method is highly effective when dealing with responses influenced by several parameters; it significantly minimises the number of tests needed to model and optimise the responses influenced by various input parameters. In addition, an ANOVA test was conducted for the performance parameters to evaluate individual input parameters and its percentage contribution. It was found that IT has most significant on BTE; NOX and smoke emission was highly influenced by EGR rate, followed by IT and IP.  相似文献   

9.
The present research work focuses on the influence of exhaust gas recirculation (EGR) on the characteristics of the diesel engine operated with 20% tamarind seed methyl ester (TSME 20) as the renewable fuel. The use of TSME 20 as biodiesel results in closer performance characteristics with diesel fuel. However, TSME 20 biodiesel blend generated higher oxides of nitrogen (NOX) emissions at all operating conditions. Firstly, tests are performed using diesel and TSME 20 biodiesel blend at constant speed under different loads. Thereafter, experiments are conducted on TSME 20 with EGR rates at different concentrations. The test results revealed that with TSME 20 with 20% EGR rate, NOX emissions are reduced by 45.67% and 52.69% when compared to diesel and TSME 20. However, there is a slight reduction in brake thermal efficiency. Hence, the use of 20% EGR rate to TSME 20 is an optimum approach for better control of NOX emissions.

Abbreviations BDC: bottom dead centre; BMEP: brake mean effective pressure; BSFC: brake-specific fuel consumption; BTE: brake thermal efficiency; CO: carbon monoxide; CO2: carbon dioxide; EGR: exhaust gas recirculation; FSN: filter smoke number; HC: hydrocarbon; kWh: kilo Watt hour; NOX: oxides of nitrogen; ppm: parts per million; SO: smoke opacity; TDC: top dead centre; TSME: tamarind seed methyl ester; TSME 20: 20% tamarind seed methyl ester; TSME 20–20%: tamarind seed methyl ester with 80% diesel; TSME 10% EGR: TSME 20 with 10% exhaust gas recirculation; TSME 20% EGR: TSME 20 with 20% exhaust gas recirculation; TSME 30% EGR: TSME 20 with 30% exhaust gas recirculation  相似文献   

10.
An experimental investigation to measure the evaporation rates, PSZ-coated engine performance and emissions of radish biodiesel (Methyl Ester of radish oil) and its blends in different volumetric proportions with diesel is presented. The thermo-physical properties of all the fuel blends have been measured and presented. Evaporation rates of neat radish biodiesel, neat diesel and their bends have been measured under slow convective environment of air velocity of 0.2?m/s with a constant temperature of 200°C. Evaporation constants have been determined by using the droplet regression rate data. The neat fuels and fuel blends have been utilised in a test engine with different load conditions to evaluate the performance and emission characteristics of the fuels. From the observed evaporation, performance and emissions characteristics, it can be suggested that a blend of B25–B75 could be optimally used in coated diesel engine settings without any modifications on it.  相似文献   

11.
Rising prices, depletion of fossil fuels and insufficient supply have created great interest on alternative sources of energy and fuels, for example biodiesel. Vegetable oils have been investigated as potential source for biodiesel, but they bring burden on food supply. Biodiesels obtained from non-edible sources are getting much interest now-a-days. This article deals with performance and emission study of biodiesel extracted from custard apple seeds that is non-edible. The custard apple biodiesel is obtained through the tranesterification process and different blends (B10, B20, B30 and B40) are prepared by mixing them with the conventional diesel fuel. The experiments are conducted on a four-stroke DI diesel engine at a compression ratio of 17.5, and performance and emission characteristics are evaluated. The study revealed that custard apple biodiesel has the potential to be used as an alternative source without any modifications in the engine.  相似文献   

12.
ABSTRACT

It has been determined that world oil production is likely to level off very shortly and that alternative fuels will have to meet the demands of an increasing energy crisis. The crude oil price is continuing to increase; at the same time the need of energy is also increasing rapidly. So there is an urgent need to switch to some other fuels which could replace petrol and diesel in order to produce energy. An eco-friendly alternative is required to fulfil the growing demand. This project highlights our work on alternate fuels and the importance of choosing radish seed as one such alternative. The aim of this study is the experimental investigation of performance and emissions on a single-cylinder direct-injection diesel engine with a coating. Diesel, B25, B50, B75 and B100 are used as fuels. The engine cylinder head, valves and piston crown are coated with 100 micron of nickel-chrome-aluminium bond coat and 450 micron of partially stabilised zirconia by the atmospheric plasma spray method [Ravikumar and Senthilkumar (2013). “Reduction of NOx Emission on NiCrAl-Titanium Oxide Coated Direct Injection Diesel Engine Fuelled with Radish (Raphanus sativus) Biodiesel.” Journal of Renewable and Sustainable Energy 5 (6): 063121]. Further, by using radish biodiesel and its blends, the emission and performance characteristics are checked and a suitable blend is selected.  相似文献   

13.
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NOx and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NOx and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NOx and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.  相似文献   

14.
The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with bio additive. Both the diesel and biodiesel fuel blend was injected at 23° Before Top Dead Centre to the combustion chamber. The experiment was carried out with three different ratios of bio additive. Biodiesel was extracted from Jatropha oil; 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The bio additive was added to B20MEOJ at various concentrations of 1?ml, 2?ml and 3?ml, respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission using bio additive blends. The results concluded that full load shows an increase in efficiency when compared with diesel, and highest efficiency is obtained with B20MEOJBA 3?ml bio additive blend. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has a performance closer to that of diesel, but emission is reduced in all blends of B20MEOJBA 3?ml compared to that in diesel. Thus the work marks for the suitability of biodiesel blends as an alternate fuel in diesel engines.  相似文献   

15.
The depletion of fossil fuels and increasing demand leads to research in alternate fuels. The alternate fuels are bio-degradable, renewable and non-toxic. Many types of oils are re-used in biodiesel production, considering their availability, among which linseed oil is the most significant one. Injection timing plays a major role among various injection parameters which affects its performance and emission characteristics. This paper focuses on experimental investigation on a single cylinder, four-stroke direct injection diesel engine with output of 5.2?kW at 1500?rpm at various injection timings, 20, 23, 26 degree BTDC for observing the performance and emission characteristics of direct injection diesel engine using methyl esters of linseed oil and its blends. The blends are B10, B20, and fuel characteristics are observed. The results show that when compared with diesel it gives an increase in BTHE and reduction in SFC. Both the biodiesel blends give lesser NOx. Slightly higher CO and HC emission were found. The performance and emissions were increased in when injection increased.  相似文献   

16.
The energy consumption is increasing rapidly due to population growth, improved living standards and industrialisation. A significant amount of fossil fuels is consumed by the transportation sector, which causes the fast depletion of fossil fuels and environmental pollution. These problems can be overcome by using Biodiesel. This research work aims to reduce the NOx emission in diesel engines. The literature survey reveals that the use of a fuel additive reduces the emissions by oxygenating the fuel. Among oxygenates, ether proves to behave better than alcohols. Hence, for this present work, two different types of ethers were selected which were not used in earlier occasions. DGME (Diethylene Glycol Monomethyl Ether) and DGMB (Diethylene Glycol Monobutyl Ether) are the two additives selected from the ether group and used as additives with palm oil methyl ester (POME) biodiesel in various proportions and tested in a direct injection compression ignition engine which reduced the emissions. To start with, the engine was run with diesel and subsequently with biodiesel and with the additives. The performance tests were carried out in a single-cylinder, four-stroke, water-cooled engine with and without exhaust gas recirculation (EGR). This engine is coupled with eddy current dynamometer. The use of biodiesel in conventional diesel engines results in substantial reduction in emission of carbon monoxide, particulates and unburned hydrocarbons, but increases NOx emission. This review focuses on reduction of NOx emission. Combustion and performance analysis of the engine have also been evaluated.  相似文献   

17.
The transport sector is the most essential driver of growth and economic development, which is one of the biggest contributors to climate change, responsible for almost a quarter of the global carbon dioxide emissions. In this paper, the experiments were conducted for an injection timing of 21° with standard injection pressure of 220?bar at different proportions such as 20%, 40% and 60% of biodiesel blends with pure diesel fuel. Other parameters like injection pressure and mass flow rate are kept constant. The performance parameters for running the engine are 1500?rpm and a rated power of 4.4?kW. The performance test resulted in the increased BTE and reduction in the SFEC for B20 blend as compared to the other proportions. The emission characteristics show that the CO, UHC and NOx were decreased for B20 when compared with the other proportions.  相似文献   

18.
The combustion characteristics of a single-cylinder, four-stroke, air-cooled and direct injection (DI) diesel engine fuelled with methyl ester of cotton seed oil (MECSO) and its blends with neat diesel fuel were examined. The experiments were conducted at a constant speed under steady-state condition with a Kirloskar TAF 1 engine. Combustion characteristics such as cylinder pressure, heat release rate (HRR), cumulative heat release rate (CHRR), maximum cylinder pressure, rate of pressure rise, ignition delay, duration of injection and combustion duration of MECSO and its blends with diesel were evaluated and compared with those of diesel fuel. From the analysis, it was found that the peak cylinder pressure and HRR of diesel were higher when compared with those of MECSO blends. The ignition delay, duration of injection and combustion duration decreased for MECSO blends compared to those of diesel. However, the CHRR of MECSO and its blends were higher than that of diesel. Finally, the study showed that B25 (25% of MECSO and 75% of diesel) gave optimum combustion characteristics for all loads and could be used as a viable alternative fuel in a DI diesel engine without any engine modifications.  相似文献   

19.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

20.
The full load performance characteristics of a diesel engine fuelled with palm kernel biodiesel and its blend with diesel fuel are presented in this paper. The biodiesel was synthesised from Nigerian palm kernel oil through a direct base catalysed transesterification process using sodium hydroxide and methanol as the catalyst and alcohol, respectively. The produced biodiesel was blended with neat diesel fuel at a ratio of 20% biodiesel to 80% diesel by volume. The engine torque, brake power, brake specific fuel consumption and brake mean effective pressure were determined for each of the fuels at 400 rpm intervals between 1200 and 3600 rpm. In other to establish a baseline for comparison, the engine was first run on neat diesel. The test results interestingly revealed that the fuel blend (B20) produced higher torque at low and medium engine speeds than neat diesel fuel and unblended biodiesel (B100). This suggests that it can be a suitable fuel for heavy duty engines that are required to develop high torque at low engine speeds. It was also observed that diesel fuel developed higher torque and brake power than the unblended biodiesel (B100) at all tested speeds and showed the least brake specific fuel consumption possibly because of its higher heating value. In all, the palm kernel biodiesel and its blend (B20) exhibited performance characteristic trends very similar to that of diesel fuel thus confirming them as suitable alternative fuels for compression ignition engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号