共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensors: Single‐Crystal‐to‐Single‐Crystal Transformation of a Europium(III) Metal–Organic Framework Producing a Multi‐responsive Luminescent Sensor (Adv. Funct. Mater. 26/2014) 下载免费PDF全文
Xue‐Zhi Song Shu‐Yan Song Shu‐Na Zhao Zhao‐Min Hao Min Zhu Xing Meng Lan‐Lan Wu Hong‐Jie Zhang 《Advanced functional materials》2014,24(26):4017-4017
2.
Single‐Crystal‐to‐Single‐Crystal Transformation of a Europium(III) Metal–Organic Framework Producing a Multi‐responsive Luminescent Sensor 下载免费PDF全文
Xue‐Zhi Song Shu‐Yan Song Shu‐Na Zhao Zhao‐Min Hao Min Zhu Xing Meng Lan‐Lan Wu Hong‐Jie Zhang 《Advanced functional materials》2014,24(26):4034-4041
A sensor with a red‐emission signal is successfully obtained by the solvothermal reaction of Eu3+ and heterofunctional ligand bpydbH2 (4,4′‐(4,4′‐bipyridine‐2,6‐diyl) dibenzoic acid), followed by terminal‐ligand exchange in a single‐crystal‐to‐single‐crystal transformation. As a result of treatments both before and after the metal–organic framework formation, accessible Lewis‐base sites and coordinated water molecules are successfully anchored onto the host material, and they act as signal transmission media for the recognition of analytes at the molecular level. This is the first reported sensor based on a metal–organic framework (MOF) with multi‐responsive optical sensing properties. It is capable of sensing small organic molecules and inorganic ions, and unprecedentedly it can discriminate among the homologues and isomers of aliphatic alcohols as well as detect highly explosive 2,4,6‐trinitrophenol (TNP) in water or in the vapor phase. This work highlights the practical application of luminescent MOFs as sensors, and it paves the way toward other multi‐responsive sensors by demonstrating the incorporation of various functional groups into a single framework. 相似文献
3.
Dengrong Sun Seungwook Jang Se‐Jun Yim Lin Ye Dong‐Pyo Kim 《Advanced functional materials》2018,28(13)
Metal doped core–shell Metal‐Organic Frameworks@Covalent Organic Frameworks (MOFs@COFs) are presented as a novel platform for photocatalysis. A palladium (Pd) doped MOFs@COFs in the form of Pd/TiATA@LZU1 shows excellent photocatalytic performance for tandem dehydrogenation and hydrogenation reactions in a continuous‐flow microreactor and a batch system, indicating the great potential of the metal doped MOFs@COFs as a multifunctional platform for photocatalysis. Explanations for the performance enhancement are elucidated. An integrated dual‐chamber microreactor coupled with the metal doped MOFs@COFs is introduced to demonstrate a concept of an intensified green photochemical process, which can be broadly extended to challenging liquid–gas tandem and cascade reactions. 相似文献
4.
Simona Galli Alessandro Cimino Joshua F. Ivy Carlotta Giacobbe Ravi K. Arvapally Rebecca Vismara Stefano Checchia Mustafa A. Rawshdeh Christian T. Cardenas Waleed K. Yaseen Angelo Maspero Mohammad A. Omary 《Advanced functional materials》2019,29(40)
A fluorous metal–organic framework [Cu(FBTB)(DMF)] (FMOF‐3) [H2FBTB = 1,4‐bis(1‐H‐tetrazol‐5‐yl)tetrafluorobenzene] and fluorous nonporous coordination polymer [Ag2(FBTB)] (FN‐PCP‐1) are synthesized and characterized as for their structural, thermal, and textural properties. Together with the corresponding nonfluorinated analogues lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], and two known (super)hydrophobic MOFs, FMOF‐1 and ZIF‐8, they have been investigated as low‐dielectric constant (low‐κ) materials under dry and humid conditions. The results show that substitution of hydrogen with fluorine or fluoroalkyl groups on the organic linker imparts higher hydrophobicity and lower polarizability to the overall material. Pellets of FMOF‐1, FMOF‐3, and FN‐PCP‐1 exhibit κ values of 1.63(1), 2.44(3), and 2.57(3) at 2 × 106 Hz, respectively, under ambient conditions, versus 2.94(8) and 3.79(1) for lc‐[Cu(BTB)(DMF)] and [Ag2(BTB)], respectively. Such low‐κ values persist even upon exposure to almost saturated humidity levels. Correcting for the experimental pellet density, the intrinsic κ for FMOF‐1 reaches the remarkably low value of 1.28, the lowest value known to date for a hydrophobic material. 相似文献
5.
Despite recent progress in photo‐electrochemical (PEC) water oxidation systems for TiO2‐based photoanodes, PEC performance improvement is still seriously hampered due to poor carrier transport efficiency and sluggish surface water oxidation kinetics of pristine TiO2. Herein, for the first time a brand new metal–organic framework (MOF)‐derived Co3C nanosheet with narrow bandgap energy is demonstrated, to effectively sensitize TiO2 hollow cages as a heterostructure photoanode for PEC water oxidation. It is found that MOF‐derived Co3C nanosheet with narrow bandgap characteristic can simultaneously accelerate the surface water oxidation kinetics and extend the light harvesting range of pristine TiO2. Meanwhile, a uniquely matched type‐II heterojunction constructed between MOF‐derived Co3C and TiO2 results in an evidently spontaneous e?/h+ separation. MOF‐derived Co3C/TiO2 heterostructure photoanodes bring about drastically improved PEC water oxidation performance. Specifically, MOF‐derived Co3C‐3/TiO2 photoanode with an optimized content of Co3C achieves the highest photocurrent density and charge separation efficiency of 2.6 mA cm?2 and 92.6% at 1.23 V versus reversible hydrogen electrode, corresponding to 201% and 152% improvement compared with pristine TiO2 nanocages. The ingeniously prepared MOF‐derived Co3C carbide with narrow bandgap energy as a cocatalyst paves new way to construct potentially high performance solar‐energy conversion system. 相似文献
6.
Jisheng Xiao Siyu Chen Ji Yi Hao F. Zhang Guillermo A. Ameer 《Advanced functional materials》2017,27(1)
Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐co‐N‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. 相似文献
7.
Guosheng Chen Xu'an Fang Qing Chen Jin'ge Zhang Zhensong Zhong Jianqiao Xu Fang Zhu Gangfeng Ouyang 《Advanced functional materials》2017,27(38)
Separation and labeling are the crucial steps for the carbohydrates identification and detection in the important field of biochemistry, biomedicine, glycomics, and glycobiology. Herein, for the first time, a boronic acid decorated defective metal–organic framework (B‐D‐MI‐100) nanoreactor is designed, which integrates fast separation and labeling of carbohydrates into one step. Without the sacrifice of internal room space, the incorporation of abundant functional boronic acid groups into the framework is achieved through metal–ligand–fragment coassembly strategy. And the novel solid phase orientation labeling approach performed within elaborate Cr based B‐D‐MIL‐100 nanoreactor is facile to avoid the conformation transition of carbohydrates occurred in classical liquid‐phase labeling. As a result, the novel approach presents several merits, including high separation efficiency (almost all of the incorporated boronic acid groups are available), much fast labeling reaction speed (labeling reaction time is decreased from 7 h to 3 min), high purity of the product, and three orders of magnitude lower applicable carbohydrate concentration for labeling. Thus, this new approach advances the idea to efficiently detect and identify trace carbohydrates in important fields such as glycomics and glycobiology. 相似文献
8.
Discovering new methods to tailor the physical and chemical properties of metal–organic frameworks (MOFs) for their numerous potential applications is highly desired. In this work, engineering defects in MOF via a molecular imprinting approach is developed to endow HKUST‐1, a well‐studied classical MOF, with hierarchical structure, mesoporosity, and anionic framework property. Ringlike anionic HKUST‐1 (HKUST‐1‐R) and a wide variety of metal‐doped isostructural analogues (M/HKUST‐1‐R, M = Ca, Cd, Ce, Co, Li, Mn, Na, Ni, or Zn) are obtained. The benefits of transforming imprinted HKUST‐1‐R to M/HKUST‐1‐R are further demonstrated for various applications. This synthetic strategy is therefore suitable for rational design and functionalization of MOFs in addition to their morphological control in nanoscale. 相似文献
9.
Ming Hu Yi Ju Kang Liang Tomoya Suma Jiwei Cui Frank Caruso 《Advanced functional materials》2016,26(32):5827-5834
The rational design and engineering of metal–organic framework (MOF) crystals with hollow features has been used for various applications. Here, a top‐down strategy is established to construct hollow MOFs via synergistic etching and surface functionalization by using phenolic acid. The macrosized cavities are created inside various types of MOFs without destroying the parent crystalline framework, as evidenced by electron microscopy and X‐ray diffraction. The modified MOFs are simultaneously coated by metal–phenolic films. This coating endows the MOFs with the additional functionality of responding to near infrared irradiation to produce heat for potential photothermal therapy applications. 相似文献
10.
Xiu‐Li Yang Xiahui Chen Gui‐Hua Hou Rong‐Feng Guan Rong Shao Ming‐Hua Xie 《Advanced functional materials》2016,26(3):393-398
By incorporating an anthracene moiety into a framework, a multiresponsive luminescent metal–organic framework ( 1 ) has been synthesized, which exhibits both direct chemiluminescence (CL) and dual tunable photoluminescence. By utilizing the CL, 1 has been explored as a selective visual sensor for hydrogen peroxide. Moreover, 1 also exhibits tunable fluorescence response toward different analytes. For electron‐rich aromatics, “turn‐on” and “turn‐off” responses can be simply switched by varying the excitation wavelength. For nitroaromatics, 1 exhibits novel linear quantitative quenching response. Density functional theory (DFT) calculations and experiments have been carried out to study the unique fluorescence response. The multiple luminescence properties and dual tunable sensing response indicate that incorporating anthracene moieties into frameworks should be a promising strategy to develop unprecedented luminescent materials with remarkable sensing properties. 相似文献
11.
Gaurav Khandelwal Nirmal Prashanth Maria Joseph Raj Sang‐Jae Kim 《Advanced functional materials》2020,30(12)
Zeolitic imidazole framework (ZIF), a subfamily of metal–organic framework (MOF), offers excellent chemical and thermal stability in addition to other MOF advantages. The triboelectric series predominantly consist of few metals and mainly polymers that are not suitable for the development of sensors with high selectivity and specificity. The development of multifunctional, tunable materials is of utmost importance for extending the applications of a triboelectric nanogenerator (TENG). The TENG based on the ZIF subfamily materials (ZIF‐7, ZIF‐9, ZIF‐11, and ZIF‐12) is reported here. The surface roughness, structural, morphological, and surface potential analysis reveals the detailed characteristics of the ZIF family members. The ZIFs and Kapton are used as triboelectric layers for the ZIF‐TENG fabrication. The device is analyzed in detail for its electrical performance (voltage, current, charge, stability, load matching analysis, and capacitor charging). The ZIF‐7 TENG generates the highest output of 60 V and 1.1 µA in vertical contact‐separation mode. Finally, various low‐power electronics are successfully driven with the capacitor charged by the output of the ZIF‐7 TENG. 相似文献
12.
A novel hierarchical structured photoanode based on metal–organic frameworks (MOFs)‐derived porous Co3O4‐modified TiO2 nanorod array grown on Si (MOFs‐derived Co3O4/TiO2/Si) is developed as photoanode for efficiently photoelectrochemical (PEC) water oxidation. The ternary Co3O4/TiO2/Si heterojunction displays enhanced carrier separation performance and electron injection efficiency. In the ternary system, an abnormal type‐II heterojunction between TiO2 and Si is introduced, because the conduction band and valence band position of Si are higher than those of TiO2, the photogenerated electrons from TiO2 will rapidly recombine with the photogenerated holes from Si, thus leading to an efficient separation of photogenerated electrons from Si/holes from TiO2 at the TiO2/Si interface, greatly improving the separation efficiency of photogenerated hole within TiO2 and enhances the photogenerated electron injection efficiency in Si. While the MOFs‐derived Co3O4 obviously improves the optical‐response performance and surface water oxidation kinetics due to the large specific surface area and porous channel structure. Compared with MOFs‐derived Co3O4/TiO2/FTO photoanode, the synergistic function in the MOFs‐derived Co3O4/TiO2/Si NR photoanode brings greatly enhanced photoconversion efficiency of 0.54% (1.04 V vs reversible hydrogen electrode) and photocurrent density of 2.71 mA cm?2 in alkaline electrolyte. This work provides promising methods for constructing high‐performance PEC water splitting photoanode based on MOFs‐derived materials. 相似文献
13.
Song Gao Jingwei Hou Jie Zeng Joseph J. Richardson Zi Gu Xiang Gao Dongwei Li Meng Gao Da‐Wei Wang Pu Chen Vicki Chen Kang Liang Dongyuan Zhao Biao Kong 《Advanced functional materials》2019,29(18)
Synthetic nano/micromotors are a burgeoning class of materials with vast promise for applications ranging from environmental remediation to nanomedicine. The motility of these motors is generally controlled by the concentration of accessible fuel, and therefore, engineering speed‐regulation mechanisms, particularly using biological triggers, remains a continuing challenge. Here, control over the movement of superassembled porous framework micromotors via a reversible, biological‐relevant pH‐responsive regulatory mechanism is demonstrated. Succinylated β‐lactoglobulin and catalase are superassembled in porous framework particles, where the β‐lactoglobulin is permeable at neutral pH. This permeability allows the fuel (H2O2) to access catalase, leading to autonomous movement of the micromotors. However, at mild acidic pH, succinylated β‐lactoglobulin undergoes a reversible gelation process, preventing the access of fuel into the micromotors where the catalase resides. To one's knowledge, this study represents the first example of chemically driven motors with rapid, reversible pH‐responsive motility. Furthermore, the porous framework significantly enhances the biocatalytic activity of catalase, allowing ultralow H2O2 concentrations to be exploited at physiological conditions. It is envisioned that the simultaneous exploitation of pH and chemical potential of such nanosystems could have potential applications as stimulus‐responsive drug delivery vehicles that benefit from the complex biological environment. 相似文献
14.
Metal–Organic Frameworks with Boronic Acid Suspended and Their Implication for cis‐Diol Moieties Binding 下载免费PDF全文
Xiangyang Zhu Jinlou Gu Junying Zhu Yongsheng Li Liming Zhao Jianlin Shi 《Advanced functional materials》2015,25(25):3847-3854
Introduction of accessible boronic acid functionality into metal–organic frameworks (MOFs) might to endow them with desired properties for potential applications in recognition and isolation of cis‐diol containing biomolecules (CDBs). However, no investigation is found to address this topic until now. Herein, Cr‐based MOFs of MIL‐100 (MIL stands for Materials from Institut Lavoisier) integrated with different pendent boronic acid group (MIL‐100‐B) are reported. This new functional material is successfully prepared using a simple metal–ligand–fragment coassembly (MLFC) strategy with isostructure to the parent MIL‐100 as verified by X‐ray diffraction characterization. The integration and content tunability of the boronic acid group in the framework are confirmed by X‐ray photoelectron spectroscopy and 11B NMR. Transmission electron microscopy reveals that MIL‐100‐B can evolve into well‐defined morphology and nanoscale size at optimized boronic acid incorporating level. The obtained MOFs exhibit comparable surface areas and pore volumes with parent MIL‐100 and present exceptional chemical stability in a wide pH range. The inherent boronic acid components in MIL‐100‐B can effectively serve as the recognition units for the cis‐diol moieties and consequently enhance the capture capabilities for CDBs. The exceptional chemical stability, high porosity, and good reusability as well as the intrinsic cis‐diol moieties recognition function prefigure great potential of the current MIL‐100‐B in CDBs purification, sensing, and separation applications. 相似文献
15.
Wei Zhu Guolei Xiang Jin Shang Jimin Guo Benyamin Motevalli Paul Durfee Jacob Ongudi Agola Eric N. Coker C. Jeffrey Brinker 《Advanced functional materials》2018,28(16)
A novel strategy for the versatile functionalization of the external surface of metal‐organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic‐inspired lipid molecule DPGG (1,2‐dipalmitoyl‐sn‐glycero‐3‐galloyl) with metal nodes/sites surrounding MOF surface. X‐ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH‐responsive nature of metal‐phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water‐stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation‐induced interfacial assembly conducted on an air/water interface. Finally, the easy fusion of a second functional layer onto DPGG‐modified MOF cores, enabled a series of MOF‐based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so‐called protocells), polyhedral core‐shell structures, hybrid lipid‐modified‐plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications. 相似文献
16.
17.
Guangwei He Mostapha Dakhchoune Jing Zhao Shiqi Huang Kumar Varoon Agrawal 《Advanced functional materials》2018,28(20)
Metal–organic framework (MOF) films have recently emerged as highly permselective membranes yielding orders of magnitude higher gas permeance than that from the conventional membranes. However, synthesis of highly intergrown, ultrathin MOF films on porous supports without complex support‐modification has proven to be a challenge. Moreover, there is an urgent need of a generic crystallization route capable of synthesizing a wide range of MOF structures in an intergrown, thin‐film morphology. Herein, a novel electrophoretic nuclei assembly for crystallization of highly intergrown thin‐films (ENACT) approach, that allows synthesis of ultrathin, defect‐free ZIF‐8 on a wide range of unmodified supports (porous polyacrylonitrile, anodized aluminum oxide, metal foil, porous carbon and graphene), is reported. As a result, a remarkably high H2 permeance of 8.3 × 10?6 mol m?2 s?1 Pa?1 and ideal gas selectivities of 7.3, 15.5, 16.2, and 2655 for H2/CO2, H2/N2, H2/CH4, and H2/C3H8, respectively, are achieved from an ultrathin (500 nm thick) ZIF‐8 membrane. A high C3H6 permeance of 9.9 × 10?8 mol m?2 s?1 Pa?1 and an attractive C3H6/C3H8 selectivity of 31.6 are obtained. The ENACT approach is straightforward, reproducible and can be extended to a wide range of nanoporous crystals, and its application in the fabrication of intergrown ZIF‐7 films is demonstrated. 相似文献
18.
Zhuopeng Wang Duarte Ananias Arnau Carné‐Sánchez Carlos D. S. Brites Inhar Imaz Daniel Maspoch João Rocha Luís D. Carlos 《Advanced functional materials》2015,25(19):2824-2830
Accurate, noninvasive, and self‐referenced temperature measurements at the submicrometer scale are of great interest, prompted by the ever‐growing demands in the fields of nanotechnology and nanomedicine. The thermal dependence of the phosphor's luminescence provides high detection sensitivity and spatial resolution with short acquisition times in, e.g., biological fluids, strong electromagnetic fields, and fast‐moving objects. Here, it is shown that nanoparticles of [(Tb0.914Eu0.086)2(PDA)3(H2O)]·2H2O (PDA = 1,4‐phenylenediacetic acid), the first lanthanide–organic framework prepared by the spray‐drying method, are excellent nanothermometers operating in the solid state in the 10–325 K range (quantum yield of 0.25 at 370 nm, at room temperature). Intriguingly, this system is the most sensitive cryogenic nanothermometer reported so far, combining high sensitivity (up to 5.96 ± 0.04% K?1 at 25 K), reproducibility (in excess of 99%), and low‐temperature uncertainty (0.02 K at 25 K). 相似文献