首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report on the preparation of monodisperse polyaniline (PANi)–silica composite capsules and hollow spheres on monodisperse core–gel‐shell template particles. An extension of the previously reported inward growth method was used. The samples were self‐stabilized without external additives. The core–gel‐shell particles were prepared by the inward sulfonation of monodisperse polystyrene particles. The introduced sulfonic acid and sulfone groups are responsible for the gel properties. The gel‐shell thickness and core size were synchronously controlled over the whole particle radius range. After aniline (ANi) monomer was preferentially absorbed in the sulfonated polystyrene shell, PANi was formed by polymerization. PANi was doped in situ with a sulfonic acid group to give the capsules a high conductivity. PANi hollow spheres were derived after the polystyrene cores were dissolved: their cavity size and shell thickness were synchronously controlled by using different core–gel‐shell particles. The PANi–silica composite capsules and hollow spheres were therefore prepared by a sol–gel process using tetraethylorthosilicate in the conducting shell. The PANi shell became more robust while maintaining the same conductivity level. Morphological results indicate that the PANi and silica formed a bicontinuous network. Fourier‐transform infrared (FTIR) spectra revealed that the hydrogen bonding in the PANi–gel shell was enhanced after the silica phase was incorporated, which could explain the high conductivity level after the silica phase was added. In a converse procedure, silica capsules and hollow spheres were prepared by a sol–gel process that incorporated tetraethylorthosilicate into the core–gel‐shell templates, which was followed by the absorption and polymerization of aniline in the silica shell thus forming PANi–silica composite capsules and hollow spheres. The silica capsules and hollow spheres thereby became conductive.  相似文献   

2.
The Fe‐MgO core‐shell morphology is proposed within the single‐domain nanoparticle regime as an enhanced magnetically driven hyperthermia carrier. The combinatory use of metallic iron as a core material together with the increased particle size (37–65 nm) triggers the tuning of dipolar interactions between particles and allows for further enhancement of their collective heating efficiency via concentration control. A theoretical universal estimation of hysteresis losses reveals the role of dipolar interactions on heating efficiency and outlines the strong influence of coupling effects on hyperthermia opening a novel roadmap towards multifunctional heat‐triggered theranostics particles.  相似文献   

3.
Highly crystallized ZnO–Ga2O3 core–shell heterostructure microwire is synthesized by a simple one‐step chemical vapor deposition method, and constructed into a self‐powered solar‐blind (200–280 nm) photodetector with a sharp cutoff wavelength at 266 nm. The device shows an ultrahigh responsivity (9.7 mA W?1) at 251 nm with a high UV/visible rejection ratio (R 251 nm/R 400 nm) of 6.9 × 102 under zero bias. The self‐powered device has a fast response speed with rise time shorter than 100 µs and decay time of 900 µs, respectively. The ultrahigh responsivity, high UV/visible rejection ratio, and fast response speed make it highly suitable in practical self‐powered solar‐blind detection. Additinoally, this microstructure heterojunction design method would provide a new approach to realize the high‐performance self‐powered photodetectors.  相似文献   

4.
Fabric-based triboelectric nanogenerators (TENGs) exhibit superior output performance, flexibility, and wearability. However, the fabric structure often creates gaps that accumulate contaminants, which weaken the performance and durability of the TENGs. To address this challenge, a novel eco-friendly superhydrophobic fabric-based TENG (SF-TENG) woven with superhydrophobic electroconductive bacterial cellulose fiber (SEBC fiber) is presented. To construct durable superhydrophobicity, an ingenious bio-fabricated method is employed for the shell–core structure. SEBC fibers with bio-fabricated shell–core structure exhibit excellent electroconductibility, mechanical property, biodegradability, and durable superhydrophobicity. SF-TENG displays a maximum open-circuit voltage of 266.0 V, a short-circuit current of 5.9 µA, and an output power of 489.7 µW, and successfully powers devices such as stopwatch and calculator. Abilities of self-cleaning and anti-fouling guarantee the stable output performance of SF-TENG under harsh environmental conditions such as liquids pouring. Furthermore, the intelligent clothing is designed based on SF-TENG to detect motion signals, and it is further utilized to construct a Sports and Health Monitoring System as a deep application. In summary, this study provides a novel strategy of bio-fabrication for the design and preparation of superhydrophobic electroconductive fiber with shell–core structure. The SF-TENG demonstrates practicability, stability and is promising for wearable devices in harsh environmental conditions.  相似文献   

5.
Core–shell nanostructures have received widespread attention because of their potential usage in various technological and scientific fields. However, they still face significant challenges in terms of fabrication of core–shell nanostructure libraries on a controlled, and even programmed scale. This study proposes a general approach to systematically fabricate core–shell nanohybrids using liquid-metal Ga alloys as reconfigurable templates, and the initiation of a local galvanic replacement reaction is demonstrated utilizing an ultrasonic system. Under ultrasonic agitation, the hydrated gallium oxides generated on the liquid metal droplets, simultaneously delaminated themselves from the interfaces. Subsequently, single-metal or bimetallic components are deposited on fresh smooth Ga-based alloys via galvanic reactions to form unique core–shell metal/metal nanohybrids. Controlled and quantitative regulation of the diversity of the non-homogeneous nanoparticle shell layer composition is achieved. The obtained core–shell nanostructures are used as efficient microwave absorbers to dissipate unwanted electromagnetic wave pollution. The effective absorption bands (90% absorption) of core–shell Ga Ni and Ga CoNi nanohybrids are 3.92 and 3.8 GHz at a thickness of 1.4 mm, respectively. This general and advanced strategy enables the growth of other oxides or sulfides by spontaneous interfacial redox reactions for the fabrication of functional materials in the future.  相似文献   

6.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

7.
Design of multicomponent yolk–shell structures is crucial for the fabrication of micro/nanoreactors for a variety of applications. This work reports the rational design and synthesis of yolk–shell‐structured submicroreactors with loaded metal nanoparticles into ZnO–microporous carbon core–shell structures. The solvothermal treatment and carbonization process of uniform zeolitic imidazolate framework‐8 (ZIF‐8)@resin polymer core–shell structures leads to the generation of yolk–shell‐structured ZnO@carbon. The synthesis conditions are optimized to track the evolution of ZIF‐8 in a confined space of resin polymer as a submicroreactor itself. It is found that nanoribbon evolution occurs via the formation of the intermediate needle‐like particles. The Pd&ZnO@carbon submicroreactor is shown to be a highly selective catalyst (selectivity >99%) for hydrogenation of phenylacetylene to phenylethylene. The excellent performance of Pd&ZnO@carbon particles is evidenced by higher conversion and selectivity than that of Pd/ZnO and Pd/C with similar Pd loading. Furthermore, Pd&ZnO@carbon submicroreactors show superior catalytic stability, and no deactivation after 25 h of reaction. The proposed strategy is promising for the design of multifunctional micro/nanoreactors or nanocontainers for construction of artificial cells.  相似文献   

8.
The formulation and the preparation of a TiO2 paste for dye‐sensitized solar cell technology are proposed. The TiO2 paste is characterized in terms of rheology, morphology, cross section, specific surface area, and average pore size. A conversion efficiency of 7.42% without any chemical treatment or scattering layer was obtained using the optimal thickness of 11 µm as carried out in this work. The results over different batches of the paste confirm the stability and the reproducibility. The characterization of the TiO2 semi‐transparent film is completed by investigating the dye adsorption saturation time after cyclic dye dipping steps through UV–Vis spectra measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A way to obtain macroscopic responsive materials from silicon‐oxide polymer core/shell microstructures is presented. The microparticles are composed of a 60 nm SiO2‐core with a random copolymer corona of the temperature responsive poly‐N‐isopropylacrylamide (PNIPAAm) and the UV‐cross‐linkable 2‐(dimethyl maleinimido)‐N‐ethyl‐acrylamide. The particles shrink upon heating and form a stable gel in both water and tetrahydrofuran (THF) at 3–5 wt% particle content. Cross‐linking the aqueous gel results in shrinkage when the temperature is increased above the lower critical solution temperature and it regains its original size upon cooling. By freeze drying with subsequent UV irradiation, thin stable layers are prepared. Stable fibers are produced by extruding a THF gel into water and subsequent UV irradiation, harnessing the cononsolvency effect of PNIPAAm in water/THF mixtures. The temperature responsiveness translates to the macroscopic materials as both films and fibers show the same collapsing behavior as the microcore/shell particle. The collapse and re‐swelling of the materials is related to the expelling and re‐uptake of water, which is used to incorporate gold nanoparticles into the materials by a simple heating/cooling cycle. This allows for future applications, as various functional particles (antibacterial, fluorescence, catalysis, etc.) can easily be incorporated in these systems.  相似文献   

10.
Biocompatible and green luminescent monodisperse silver/phenol formaldehyde resin core/shell spheres with controllable sizes, in the range of 180 to 1000 nm, and interesting architectures (centric, eccentric, and coenocytic core/shell spheres) have been synthesized by a facile one‐step hydrothermal approach. These spheres can be used as bioimaging labels for human lung cancer H1299 cells. The results demonstrate that the nanoparticles can be internalized into cells and exhibit no cytotoxic effects, showing that such novel biocompatible core/shell structures can potentially be used as in vivo bioimaging labels. This facile one‐pot polymerization and encapsulation technique may provide a useful tool to synthesize other core/shell particles that have potential application in biotechnology.  相似文献   

11.
This work presents a strategy of combining the concepts of localized surface plasmons (LSPs) and core/shell nanostructure configuration in a single perovskite light‐emitting diode (PeLED) to addresses simultaneously the emission efficiency and stability issues facing current PeLEDs' challenges. Wide bandgap n‐ZnO nanowires and p‐NiO are employed as the carrier injectors, and also the bottom/upper protection layers to construct coaxial core/shell heterostructured CsPbBr3 quantum dots LEDs. Through embedding plasmonic Au nanoparticles into the device and thickness optimization of the MgZnO spacer layer, an emission enhancement ratio of 1.55 is achieved. The best‐performing plasmonic PeLED reaches up a luminance of 10 206 cd m?2, an external quantum efficiency of ≈4.626%, and a current efficiency of 8.736 cd A?1. The underlying mechanisms for electroluminescence enhancement are associated with the increased spontaneous emission rate and improved internal quantum efficiency induced by exciton–LSP coupling. More importantly, the proposed PeLEDs, even without encapsulation, present a substantially improved operation stability against water and oxygen degradation (30‐day storage in air ambient, 85% humidity) compared with any previous reports. It is believed that the experimental results obtained will provide an effective strategy to enhance the performance of PeLEDs, which may push forward the application of such kind of LEDs.  相似文献   

12.
When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve NC oral delivery to treat gastrointestinal (GI) pathologies or for systemic absorption. However, GI instability of targeting moieties compromises this strategy. This study explores whether encapsulation of antibody‐coated NCs in microcapsules would protect against gastric degradation, providing NC release and targeting in intestinal conditions. Nanoparticles coated with antibodies against intercellular adhesion molecule‐1 (anti‐ICAM) or nonspecific immunoglobulin G (IgG) are encapsulated in chitosan (shell) ‐ alginate (core) microcapsules. Encapsulation efficiency is >95% and NC relase from microcapsules in storage is <10%. There is minimal NC release at gastric pH (<10%) and burst release at intestinal pH (75%–85%). Encapsulated NCs afford increased protection against degradation (threefold to fourfold) and increased cell targeting (8–20‐fold) after release versus the nonencapsulated NCs. Mouse oral gavage shows that microencapsulation provides 38%–65% greater protection of anti‐ICAM NCs in the GI tract, 40% lower gastric retention, and fourfold to ninefold enhanced intestinal biodistribution versus nonencapsulated NCs. Therefore, microencapsulation of antibody‐targeted NCs may enable active targeting strategies to be effective in the context of oral drug delivery.  相似文献   

13.
A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie-resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high-index particle with a low-index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation.  相似文献   

14.
Back‐contacted, ultrathin (<10 µm), and submillimeter‐sized solar cells made with microsystem tools are a new type of cell that has not been optimized for performance. The literature reports efficiencies up to 15% using thicknesses of 14 µm and cell sizes of 250 µm. In this paper, we present the design, conditions, and fabrication parameters necessary to optimize these devices. The optimization was performed using commercial simulation tools from the microsystems arena. A systematic variation of the different parameters that influence the performance of the cell was accomplished. The researched parameters were resistance, Shockley–Read–Hall (SRH) lifetime, contact separation, implant characteristics (size, dosage, energy, and ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. The performance of the cell was measured with efficiency, open‐circuit voltage, and short‐circuit current. Among all the parameters investigated, surface recombination and SRH lifetime proved to be the most important. Through completing the simulations, an optimized concept solar cell design was introduced for two scenarios: high and low quality materials/passivation. Simulated efficiencies up to 23.4% (1 sun) and 26.7% (100 suns) were attained for 20‐µm‐thick devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Porous capsules composed of hematite, silica, and hematite–silica composites are prepared by a templated synthesis method. Polyelectrolyte multilayer‐coated particles (PEMPs) are used to synthesize goethite nanocrystals and the resulting goethite‐nanocrystal‐embedded PEMPs (PEMP–goethite) are then used as templates to form porous capsules. The surface morphology and surface area of the porous capsules can be controlled by the size of the PEMP–goethite template, which is determined by the extent of growth of the goethite nanocrystals. By controlling the surface morphology and area, it is also possible to tune the sensitivity of the hematite capsules for use as gas‐sensing materials. This surfactant‐free approach is also used to synthesize silica and silica‐based composite capsules with a controllable porous shell thickness. This straightforward approach can also be extended to the synthesis of other porous capsules or particles with a controllable surface morphology.  相似文献   

16.
Dynamic core–shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au–Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X‐ray powder diffraction, points towards the presence of a core–shell structure with a gold core surrounded by an Au–Hg solid solution layer. The amalgamation process is described by pseudo‐zero‐order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV–vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core–shell particles.  相似文献   

17.
Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores.  相似文献   

18.
As a critical part of flexible electronics, flexible circuits inevitably work in a dynamic state, which causes electrical deterioration of brittle conductive materials (i.e., Cu, Ag, ITO). Recently, gallium‐based liquid metal particles (LMPs) with electrical stability and self‐repairing have been studied to replace brittle materials owing to their low modulus and excellent conductivity. However, LMP‐coated Ga2O3 needs to activate by external sintering, which makes it more complicated to fabricate and gives it a larger short‐circuit risk. Core–shell structural particles (Ag@LMPs) that exhibit excellent initial conductivity(8.0 Ω sq?1) without extra sintering are successfully prepared by coating nanosilver on the surface of LMPs through in situ chemical reduction. The critical stress at which rigid Ag shells rupture can be controlled by adjusting the Ag shell thickness so that LM cores with low moduli can release, achieving real‐time self‐repairing (within 200 ms) under external destruction. Furthermore, a flexible circuit utilizing Ag@LMPs is fabricated by screen printing, and exhibits outstanding stability and durability (R/R0 < 1.65 after 10 000 bending cycles in a radius of 0.5 mm) because of the functional core–shell structure. The self‐repairable Ag@LMPs prepared in this study are a candidate filler for flexible circuit design through multiple processing methods.  相似文献   

19.
Monodispersed, readily‐grafted, and biocompatible surface‐enhanced Raman spectroscopic (SERS) tagging materials are developed; they are composed of bimetallic Au@Ag nanoparticles (NPs) for optical enhancement, a reporter molecule for spectroscopic signature, and a carbon shell for protection and bioconjugation. A controllable and convenient hydrothermal synthetic route is presented to synthesize the layer‐by‐layer triplex Au–Ag–C core–shell NPs, which can incorporate the Raman‐active label 4‐mercapto benzoic acid (4‐MBA). The obtained gold seed–silver coated particles can be coated further with a thickness‐controlled carbon shell to form colloidal carbon‐encapsulated Aucore/Agshell spheres with a monodisperse size distribution. Furthermore, these SERS‐active spheres demonstrated interesting properties as a novel Raman tag for quantitative immunoassays. The results suggest such SERS tags can be used for multiplex and ultrasensitive detection of biomolecules as well as nontoxic, in vivo molecular imaging of animal or plant tissues.  相似文献   

20.
With the rapid development of nanotechnology during the last decades, the ability to detect and control individual objects at the nanoscale has enabled us to deal with complex biomedical challenges. In cancer imaging, novel nanoparticles (NPs) offer promising potential to identify single cancer cells and precisely label larger areas of cancer tissues. Herein, a new class of size tunable core–shell composite (Au–SiO2–WO3) nanoparticles is reported. These nanoparticles display an easily improvable ≈103 surface‐enhanced Raman scattering (SERS) enhancement factor with a double Au shell for dried samples over Si wafers and several orders of magnitude for liquid samples. WO3 core nanoparticles measuring 20–50 nm in diameter are sheathed by an intermediate 10–60 nm silica layer, produced by following the Stöber‐based process and Turkevich method, followed by a 5–20 nm thick Au outer shell. By attaching 4‐mercaptobenzoic acid (4‐MBA) molecules as Raman reporters to the Au, high‐resolution Raman maps that pinpoint the nanoparticles' location are obtained. The preliminary results confirm their advantageous SERS properties for single‐molecule detection, significant cell viability after 24 h and in vitro cell imaging using coherent anti‐stokes Raman scattering. The long‐term objective is to measure SERS nanoparticles in vivo using near‐infrared light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号