首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
MOS器件界面态与陷阱电荷分离方法研究   总被引:1,自引:0,他引:1  
对MOS结构器件.要分离由辐射效应引起的界面态电荷与氧化层陷阱电荷的方法有根多种.如中电带压法、电荷泵法和双晶体管法就是目前比较常用、有效的方法,分析了这些方法的优点和局限性。  相似文献   

2.
Interfacial charge separation and transfer are the main challenges of efficient semiconductor‐based Z‐scheme photocatalytic systems. Here, it is discovered that a Schottky junction at the interface between the BiVO4 {010} facet and Au is an efficient electron‐transfer route useful for constructing a high‐performance BiVO4{010}–Au–Cu2O Z‐scheme photocatalyst. Spectroscopic and computational studies reveal that hot electrons in BiVO4 {010} more easily cross the Schottky barrier to expedite the migration from BiVO4 {010} to Au and are subsequently captured by the excited holes in Cu2O. This crystal‐facet‐dependent electron shuttle allows the long‐lived holes and electrons to stay in the valence band of BiVO4 and conduction band of Cu2O, respectively, contributing to improved light‐driven CO2 reduction. This unique semiconductor crystal‐facet sandwich structure will provide an innovative strategy for rational design of advanced Z‐scheme photocatalysts.  相似文献   

3.
Constructing heterojunctions is an efficient approach for enhancing charge separation to optimize photoreactivity. Although the aligned built-in electric fields across the heterointerface are generally considered as the main driving force for charge separation, diffusion-controlled charge separation also happens, which is poorly investigated in photocatalytic heterojunctions. Here, a perylene-3,4,9,10-tetracarboxylic diimide (PDI)–bismuth oxyiodide (BiOI) heterojunction is elaborately fabricated by in situ successive ion layer adsorption and reaction (SILAR) methods. Utilizing Kelvin probe force microscopy (KPFM), the local separation of photogenerated charge carriers across the heterointerface is directly mapped, which obeys a Z-scheme mechanism. Experimental results and theoretical simulations reveal that the differences of electron densities between PDI and BiOI enable a diffusion-controlled charge separation process, which overwhelm that of built-in electric fields across heterointerfaces. Benefiting from the effective charge separation driven by a diffusion-controlled driving force, this PDI/BiOI heterojunction exhibits superior photocatalytic activities even under infrared (IR)-light irradiation. These findings highlight the importance of diffusion-controlled charge separation, and also offer useful roadmaps for the design of high-performance heterojunction photocatalysts for down-to-earth applications.  相似文献   

4.
All‐conjugated block copolymers bring together hole‐ and electron‐conductive polymers and can be used as the active layer of solution‐processed photovoltaic devices, but it remains unclear how molecular structure, morphology, and electronic properties influence performance. Here, the role of the chemical linker is investigated through analysis of two donor–linker–acceptor block copolymers that differ in the chemistry of the linking group. Device studies show that power conversion efficiencies differ by a factor of 40 between the two polymers, and ultrafast transient absorption measurements reveal charge separation only in block copolymers that contain a wide bandgap monomer at the donor–acceptor interface. Optical measurements reveal the formation of a low‐energy excited state when donor and acceptor blocks are directly linked without this wide bandgap monomer. For both samples studied, it is found that the rate of charge recombination in these systems is faster than in poly­mer–polymer and polymer–fullerene blends. This work demonstrates that the linking group chemistry influences charge separation in all‐conjugated block copolymer systems, and further improvement of photovoltaic performance may be possible through optimization of the linking group. These results also suggest that all‐conjugated block copolymers can be used as model systems for the donor–acceptor interface in bulk heterojunction blends.  相似文献   

5.
A new visible‐light responsive metallic photocatalyst, nanostructured MoO2, has been discovered. The metallic nature of MoO2 is confirmed by valance X‐ray photoelectron spectroscopy spectrum and theoretical calculations. However, MoO2 itself shows only moderate activity due to the serious charge recombination, a general disadvantage of metallic photocatalysts. The findings suggest that its effective charge diffusion length Lp is smaller than 1.0 nm while the separation efficiency ηsep is less than 10%. Therefore, only the periphery of the metallic MoO2 can effectively contribute to photocatalysis. This limitation is overcome by integrating MoO2 in a hydrothermal carbonation carbon (HTCC) matrix (mainly contains semiconductive polyfuran). This simple chemical modification brings two advantages: (i) an internal electric field is formed at the interface between MoO2 and HTCC due to their appropriate band alignment; (ii) the nanostructured MoO2 and the HTCC matrix are intertwined with each other intimately. Their small size and large contact area promote charge transfer, especially under the internal electric field. Therefore, the separation rate of photoexcited charge carrier in MoO2 is greatly enhanced. The activity increases by 2.4, 16.8, and 4.0 times in photocatalytic oxygen evolution, dyes degradation, and photoelectrochemicl cell, respectively. The new approach is helpful for further development of metallic photocatalysts.  相似文献   

6.
7.
The charge separation efficiency of water oxidation photoanodes is modulated by depositing polyelectrolyte multilayers on their surface using layer‐by‐layer (LbL) assembly. The deposition of the polyelectrolyte multilayers of cationic poly(diallyldimethylammonium chloride) and anionic poly(styrene sulfonate) induces the formation of interfacial dipole layers on the surface of Fe2O3 and TiO2 photoanodes. The charge separation efficiency is modulated by tuning their magnitude and direction, which in turn can be achieved by controlling the number of bilayers and type of terminal polyelectrolytes, respectively. Specifically, the multilayers terminated with anionic poly(styrene sulfonate) exhibit a higher charge separation efficiency than those with cationic counterparts. Furthermore, the deposition of water oxidation molecular catalysts on top of interfacial dipole layers enables more efficient photoelectrochemical water oxidation. The approach exploiting the polyelectrolyte multilayers for improving the charge separation efficiency is effective regardless of pH and types of photoelectrodes. Considering the versatility of the LbL assembly, it is anticipated that this study will provide insights for the design and fabrication of efficient photoelectrodes.  相似文献   

8.
The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation.  相似文献   

9.
红细胞衰老过程中膜表面电荷的变化情况与其结构功能密切相关。针对以往研究对轻老龄红细胞膜表面电荷的差异性不确定的问题,本文从不同的细胞分离方法分离轻老龄红细胞的效果不同的角度,通过比较分离出的轻老龄红细胞表面唾液酸的含量和细胞膜的弯曲弹性模量Kc值,提出高速离心法和Percoll密度梯度离心法分离出的轻老龄红细胞间的细胞年龄差距不同,Percoll法分离出的细胞年龄差距更大。利用Percoll密度梯度离心法,进一步分离出四种不同细胞年龄的红细胞,由红细胞表面唾液酸的含量和表面Zeta电位值检验轻老龄红细胞膜表面带电状态的差异性,结果显示,轻老龄红细胞的膜表面电荷存在明显差别,且随着细胞年龄的增长,红细胞的膜表面负电荷逐渐减少。研究结果对红细胞的衰老机制及体内清除老化红细胞的途径等研究具有重要意义。  相似文献   

10.
Solar-responsive battery holds great promise in solar-to-electrochemical energy storage, but is impeded by the lack of efficient photoelectrochemical-cathodes. Herein, a crystalline mesoporous (≈4.0 nm) covalent organic framework (TA-PT COF) with repeating units consisting of covalently linked triphenylamine (TPA) and perylenetetracarboxylic diimide (PTCDI) is presented. The repeating unit functions as both a donor–acceptor pair and a dual-redox site to realize a molecule-level coupling of intramolecular charge separation (τCS = 136.2 ps, τCR = 949 ps) and reversible redox chemistry (C=O/C O−, TPA/TPA+). Equipped with this photoelectrochemical cathode, a reversible aqueous solar-responsive battery delivered a reliable voltage-response of 376 mV, an extra round-trip efficiency of 35% and a good light durability (500 cycles). A photo-coupled electron/mass transfer mechanism of photoelectrons for Zn2+ storage and holes for OTf− storage is further revealed, shedding light on a new photoelectrochemical cathode design based on charge separation and redox-coupled COF for efficient solar-responsive batteries.  相似文献   

11.
Despite the poor screening of the Coulomb potential in organic semiconductors, excitons can dissociate efficiently into free charges at a donor–acceptor heterojunction, leading to application in organic solar cells. A kinetic Monte Carlo model that explains this high efficiency as a two‐step process is presented. Driven by the band offset between donor and acceptor, one of the carriers first hops across the interface, forming a charge transfer (CT) complex. Since the electron and hole forming the CT complex have typically not relaxed within the disorder‐broadened density of states (DOS), their remaining binding energy can be overcome by further relaxation in the DOS. The model only contains parameters that are determined from independent measurements and predicts dissociation yields in excess of 90% for a prototypical heterojunction. Field, temperature, and band offset dependencies are investigated and found to be in agreement with earlier experiments. Whereas the investigated heterojunctions have substantial energy losses associated with the dissociation process, these results suggest that it is possible to reach high dissociation yields at low energy loss.  相似文献   

12.
Organic long‐persistent luminescence (OLPL) is a long‐lasting luminescence from a photogenerated intermediated state, such as a charge separated state. Here, it is shown that many exciplex systems exhibit OLPL and that emission pathways of OLPL can be controlled by the relationship among local excited states and charge‐transfer excited states of materials.  相似文献   

13.
Charge separation at the donor–acceptor interface is a key step for high efficiency in organic solar cells. If interfacial hybrid states exist already in the dark it is plausible that they can have a major impact on the dissociation of optically generated excitations. In this work we probe such interfacial states via steady state absorption spectroscopy. A substantial bleaching of the absorption spectrum is found near the absorption edge when an electron‐accepting layer of either trinitrofluorenone (TNF), C60, or a perylene‐diimide derivative is deposited on top of a layer of electron‐donating conjugated polymers, such as MEH‐PPV or various poly‐phenylene. This is in part attributed to the formation of ground state complexes with low oscillator strength. The experiments bear out a correlation between the reduction of the absorbance with the energy gap between the donor‐HOMO and acceptor‐LUMO, the effective conjugation length of the donor, and the efficiency of exciton dissociation in the solar cell. The effect originates from mixing of the donor‐HOMO and the acceptor LUMO. Calculations using density functional theory support this reasoning. Implications for efficiency of organic solar cells will be discussed.  相似文献   

14.
15.
16.
Here SrTaO2N has been found to exhibit photoelectrochemical water splitting, with a theoretical solar‐to‐hydrogen efficiency of 14.4%. Ameliorating the interparticle charge transport by H2 annealing, the solar photocurrent of the SrTaO2N(H) granular film at 1.23 V versus reversible hydrogen electrode (RHE) is increased by ≈250% in comparison with the SrTaO2N film. Using an aberration corrected scanning transmission electron microscope and super‐X energy dispersive spectroscopy, the atomic scale observation has proved a decrease of oxygen concentrations in the surface of SrTaO2N(H) particle, which may allow its electrical conductivity to be increased from 0.77 × 10?6 to 2.65 × 10?6 S cm?1 and therefore the charge separation efficiency has been greatly increased by ≈330%. After being modified by Co–Pi water oxidation catalyst, the SrTaO2N(H) photoanode shows a solar photocurrent of 1.1 mA cm?2 and an incident photo‐to‐current efficiency value of ≈20% at 400–460 nm and 1.23 V versus RHE, which suggests that it is a new promising photoanode material for solar water splitting.  相似文献   

17.
Solid‐state dye‐sensitized solar cells employing a solid organic hole‐transport material (HTM) are currently under intensive investigation, since they offer a number of practical advantages over liquid‐electrolyte junction devices. Of particular importance to the design of such devices is the control of interfacial charge transfer. In this paper, the factors that determine the yield of hole transfer at the dye/HTM interface and its correlation with solid‐state‐cell performance are identified. To this end, a series of novel triarylamine type oligomers, varying in molecular weight and mobility, are studied. Transient absorption spectroscopy is used to determine hole‐transfer yields and pore‐penetration characteristics. No correlation between hole mobility and cell performance is observed. However, it is found that the photocurrent is directly proportional to the hole‐transfer yield. This hole‐transfer yield depends on the extent of pore penetration in the dye‐sensitized film as well as on the thermodynamic driving force ΔGdye–HTM for interfacial charge transfer. Future design of alternative solid‐state HTMs should focus on the optimization of pore‐filling properties and the control of interfacial energetics rather than on increasing material hole mobilities.  相似文献   

18.
19.
Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top‐down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1‐x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post‐annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase‐separated) samples of PbTe–PbS are analyzed by in situ high‐resolution synchrotron powder X‐ray diffraction, solid‐state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state‐of‐the‐art synchrotron X‐ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally‐induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号