首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advances demonstrate that the incorporation of phosphorous into the network of nitrogen, sulfur, or fluorine‐doped carbon materials can remarkably enhance their oxygen and hydrogen evolution activities. However, the electrocatalytic behaviors of pristine phosphorous single‐doped carbon catalysts toward the oxygen and hydrogen evolution reactions (OER and HER) are rarely investigated and their corresponding active species are not yet explored. To clearly ascertain the effects of phosphorous doping on the OER and HER and identify the active sites, herein, phosphorous unitary‐doped graphite layers with different phosphorous species distributions are prepared and the correlations between the oxygen or hydrogen evolution activity and different phosphorous species are investigated, respectively. Results indicate that phosphorous single‐doped graphite layers show a superior oxygen evolution activity to most of the reported OER catalysts and the commercial IrO2 in alkaline medium, and comparable hydrogen evolution activity to most reported carbon catalysts in acidic medium. Moreover, the relevancies unveil that the C? O? P species are the main OER active species, and the defects derived from the decomposition of C3? P = O species are the main active sites for HER, as evidenced by density functional theory calculations, showing a new perspective for the design of more effective phosphorous‐containing water‐splitting catalysts.  相似文献   

2.
The development of cost‐effective and high‐performance electrocatalysts for oxygen evolution reaction (OER) is essential for sustainable energy storage and conversion processes. This study reports a novel and facile approach to the hierarchical‐structured sheet‐on‐sheet sandwich‐like nanocomposite of CoNiO x /reduced graphene oxide as highly active electrocatalysts for water oxidation. Notably, the as‐prepared composite can operate smoothly both in 0.1 and 1.0 m KOH alkaline media, displaying extremely low overpotentials, fast kinetics, and strong durability over long‐term continuous electrolysis. Impressively, it is found that its catalytic activity can be further promoted by anodic conditioning owing to the in situ generation of electrocatalytic active species (i.e., metal hydroxide/(oxy)hydroxides) and the enriched oxygen deficiencies at the surface. The achieved ultrahigh performance is unmatched by most of the transition‐metal/nonmetal‐based catalysts reported so far, and even better than the state‐of‐the‐art noble‐metal catalysts, which can be attributed to its special well‐defined physicochemical textural features including hierarchical architecture, large surface area, porous thin nanosheets constructed from CoNiO x nanoparticles (≈5 nm in size), and the incorporation of charge‐conducting graphene. This work provides a promising strategy to develop earth‐abundant advanced OER electrocatalysts to replace noble metals for a multitude of renewable energy technologies.  相似文献   

3.
Three kinds of Mn3O4 nanoparticles with different shapes (spheres, cubes, and ellipsoids) are selectively grown on nitrogen‐doped graphene sheets through a two‐step liquid‐phase procedure. These non‐precious hybrid materials display an excellent ORR activity and good durability. The mesoporous microstructure, nitrogen doping, and strong bonding between metal species and doped graphene are found to facilitate the ORR catalytic process. Among these three kinds of Mn3O4 particles, the ellipsoidal particles on nitrogen‐doped graphene exhibit the highest ORR activity with a more positive onset‐potential of –0.13 V (close to that of Pt/C, –0.09 V) and a higher kinetic limiting current density (JK) of 11.69 mA cm–2 at –0.60 V. It is found that the ORR performance of hybrid materials can be correlated to the shape of Mn3O4 nanocrystals, and specifically to the exposed crystalline facets associated with a given shape. The shape dependence of Mn3O4 nanoparticles integrated with nitrogen‐doped graphene on the ORR performance, reported here for the first time, may advance the development of fuel cells and metal‐air batteries.  相似文献   

4.
Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen‐doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well‐known nickel‐based metal‐organic framework (NiMOF‐74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2.  相似文献   

5.
Here, pyridinic nitrogen dominated graphene aerogels with/without iron incorporation (Fe‐NG and NG) are prepared via a facile and effective process including freeze‐drying of chemically reduced graphene oxide with/without iron precursor and thermal treatment in NH3. A high doping level of nitrogen has been achieved (up to 12.2 at% for NG and 11.3 at% for Fe‐NG) with striking enrichment of pyridinic nitrogen (up to 90.4% of the total nitrogen content for NG, and 82.4% for Fe‐NG). It is found that the Fe‐NG catalysts display a more positive onset potential, higher current density, and better four‐electron selectivity for ORR than their counterpart without iron incorporation. The most active Fe‐NG exhibits outstanding ORR catalytic activity, high durability, and methanol tolerance ability that are comparable to or even superior to those of the commercial Pt/C catalyst at the same catalyst loading in alkaline environment. The excellent ORR performance can be ascribed to the synergistic effect of pyridinic N and Fe‐N x sites (where iron probably coordinates with pyridinic N) that serve as active centers for ORR. Our Fe‐NG can be developed into cost‐effective and durable catalysts as viable replacements of the expensive Pt‐based catalysts in practical fuel cell applications.  相似文献   

6.
Manganese dioxides (MnO2) are considered one of the most attractive materials as an oxygen evolution reaction (OER) electrode due to its low cost, natural abundance, easy synthesis, and environmental friendliness. Here, metal‐ion (Fe, V, Co, and Ni)‐doped MnO2 ultrathin nanosheets electrodeposited on carbon fiber paper (CFP) are fabricated using a facile anodic co‐electrodeposition method. A high density of nanoclusters is observed on the surface of the carbon fibers consisting of doped MnO2 ultrathin nanosheets with an approximate thickness of 5 nm. It is confirmed that the metal ions (Fe, V, Co, and Ni) are doped into MnO2, improving the conductivity of MnO2. The doped MnO2 ultrathin nanosheet/CFP and the IrO2/CFP composite electrodes for OER achieve a low overpotential of 390 and 245 mV to reach 10 mA cm?2 in 1 m KOH, respectively. The potential of the doped composite electrode for long‐term OER at a constant current density of 20 mA cm?2 is much lower than that of the pure MnO2 composite electrode.  相似文献   

7.
The number of catalytically reactive sites and their intrinsic electrocatalytic activity strongly affect the performance of electrocatalysts. Recently, there are growing concerns about layered double hydroxides (LDHs) for oxygen evolution reaction (OER). Exfoliating LDHs is an effective method to increase the reactive sites, however, a traditional liquid phase exfoliation method is usually very labor‐intensive and time‐consuming. On the other hand, proper heteroelement doping and edge engineering are helpful to tune the intrinsic activity of reactive sites. In this work, bulk CoFe LDHs are successfully exfoliated into ultrathin CoFe LDHs nanosheets by nitrogen plasma. Meanwhile, nitrogen doping and defects are introduced into exfoliated ultrathin CoFe LDHs nanosheets. The number of reactive sites can be increased efficiently by the formation of ultrathin CoFe LDHs nanosheets, the nitrogen dopant alters the surrounding electronic arrangement of reactive site facilitating the adsorption of OER intermediates, and the electrocatalytic activity of reactive sites can be further tuned efficiently by introducing defects which increase the number of dangling bonds neighboring reactive sites and decrease the coordination number of reactive sites. With these advantages, this electrocatalyst shows excellent OER activity with an ultralow overpotential of 233 mV at 10 mA cm?2.  相似文献   

8.
This study first presents a subtle thermal‐chlorination strategy for a universal transformation of abundant 2D metal carbides (MxCy, e.g., Cr3C2, Mo2C, NbC, and VC) to 2D graphene and M‐self‐doped graphene (MG). The as‐obtained MG endows a transparent sheet architecture of one to four atomic layers. Simultaneously, MG with different M amounts is synthesized by tuning the chlorination parameters. Among them, the novel and representative Cr‐self‐doped graphene with optimal Cr amount (4.81 at%) demonstrates the outstanding electrochemical performance. It presents an energy density of 686 W h per kg electrode and a power density of more than 391 W per kg electrode as anode material of Li ion batteries, and four‐fold activity against the commercial iridium oxide electrode toward oxygen evolution reaction as well as a comparable oxygen reduction reaction performance to the commercial platinum catalyst. Moreover, this method is readily scalable to produce graphene and MG electrode materials on industrial levels.  相似文献   

9.
The lack of cost effective, industrial‐scale production methods hinders the widespread applications of graphene materials. In spite of its applicability in the mass production of graphene flakes, arc discharge has not received considerable attention because of its inability to control the synthesis and heteroatom doping. In this study, a facile approach is proposed for improving doping efficiency in N‐doped graphene synthesis through arc discharge by utilizing anodic carbon fillers. Compared to the N‐doped graphene (1–1.5% N) synthesized via the arc process according to previous literature, the resulting graphene flakes show a remarkably increased doping level (≈3.5% N) with noticeable graphitic N enrichment, which is rarely achieved by the conventional process, while simultaneously retaining high turbostratic crystallinity. The electrolyte ion storage of synthesized materials is examined in which synthesized N‐doped graphene material exhibits a remarkable area normalized capacitance of 63 µF cm?2. The surprisingly high areal capacitance, which is superior to that of most carbon materials, is attributed to the synergistic effect of extrinsic pseudocapacitance, high crystallinity, and abundance of exposed graphene edges. These results highlight the great potentials of N‐doped graphene flakes produced by arc discharge in graphene‐based supercapacitors, along with well‐studied active exfoliated graphene and reduced graphene oxide.  相似文献   

10.
Taking advantage of the self‐assembling function of amino acids, cobalt–alanine complexes are synthesized by straightforward process of chemical precipitation. Through a controllable calcination of the cobalt–alanine complexes, N‐doped Co3O4 nanostructures (N‐Co3O4) and N‐doped CoO composites with amorphous carbon (N‐CoO/C) are obtained. These N‐doped cobalt oxide materials with novel porous nanostructures and minimal oxygen vacancies show a high and stable activity for the oxygen evolution reaction. Moreover, the influence of calcination temperature, electrolyte concentration, and electrode substrate to the reaction are compared and analyzed. The results of experiments and density functional theory calculations demonstrate that N‐doping promotes the catalytic activity through improving electronic conductivity, increasing OH? adsorption strength, and accelerating reaction kinetics. Using a simple synthetic strategy, N‐Co3O4 reserves the structural advantages of micro/nanostructured complexes, showing exciting potential as a catalyst for the oxygen evolution reaction with good stability.  相似文献   

11.
12.
A novel hybrid electrocatalyst consisting of nitrogen‐doped graphene/cobalt‐embedded porous carbon polyhedron (N/Co‐doped PCP//NRGO) is prepared through simple pyrolysis of graphene oxide‐supported cobalt‐based zeolitic imidazolate‐frameworks. Remarkable features of the porous carbon structure, N/Co‐doping effect, introduction of NRGO, and good contact between N/Co‐doped PCP and NRGO result in a high catalytic efficiency. The hybrid shows excellent electrocatalytic activities and kinetics for oxygen reduction reaction in basic media, which compares favorably with those of the Pt/C catalyst, together with superior durability, a four‐electron pathway, and excellent methanol tolerance. The hybrid also exhibits superior performance for hydrogen evolution reaction, offering a low onset overpotential of 58 mV and a stable current density of 10 mA cm?2 at 229 mV in acid media, as well as good catalytic performance for oxygen evolution reaction (a small overpotential of 1.66 V for 10 mA cm?2 current density). The dual‐active‐site mechanism originating from synergic effects between N/Co‐doped PCP and NRGO is responsible for the excellent performance of the hybrid. This development offers an attractive catalyst material for large‐scale fuel cells and water splitting technologies.  相似文献   

13.
Hydrogen evolution electrocatalysts can achieve sustainable hydrogen production via electrocatalytic water splitting; however, designing highly active and stable noble‐metal‐free hydrogen evolution electrocatalysts that perform as efficiently as Pt catalysts over a wide pH range is a challenging task. Herein, a new 2D cobalt phosphide/nickelcobalt phosphide (CoP/NiCoP) hybrid nanosheet network is proposed, supported on an N‐doped carbon (NC) matrix as a highly efficient and durable pH‐universal hydrogen evolution reaction (HER) electrocatalyst. It is derived from topological transformation of corresponding layer double hydroxides and graphitic carbon nitride. This 2D CoP/NiCoP/NC catalyst exhibits versatile HER electroactivity with very low overpotentials of 75, 60, and 123 mV in 1 m KOH, 0.5 m H2SO4, and 1 m PBS electrolytes, respectively, delivering a current density of 10 mA cm?2 for HER. Such impressive HER performance of the hybrid electrocatalyst is mainly attributed to the collective effects of electronic structure engineering, strong interfacial coupling between CoP and NiCoP in heterojunction, an enlarged surface area/exposed catalytic active sites due to the 2D morphology, and conductive NC support. This method is believed to provide a basis for the development of efficient 2D electrode materials with various electrochemical applications.  相似文献   

14.
The development of low‐cost, high‐efficiency, and robust electrocatalysts for the oxygen evolution reaction (OER) is urgently needed to address the energy crisis. In recent years, non‐noble‐metal‐based OER electrocatalysts have attracted tremendous research attention. Beginning with the introduction of some evaluation criteria for the OER, the current OER electrocatalysts are reviewed, with the classification of metals/alloys, oxides, hydroxides, chalcogenides, phosphides, phosphates/borates, and other compounds, along with their advantages and shortcomings. The current knowledge of the reaction mechanisms and practical applications of the OER is also summarized for developing more efficient OER electrocatalysts. Finally, the current states, challenges, and some perspectives for non‐noble‐metal‐based OER electrocatalysts are discussed.  相似文献   

15.
Heteroatom doping plays a significant role in optimizing the catalytic performance of electrocatalysts. However, research on heteroatom doped electrocatalysts with abundant defects and well‐defined morphology remain a great challenge. Herein, a class of defect‐engineered nitrogen‐doped Co3O4 nanoparticles/nitrogen‐doped carbon framework (N‐Co3O4@NC) strongly coupled porous nanocubes, made using a zeolitic imidazolate framework‐67 via a controllable N‐doping strategy, is demonstrated for achieving remarkable oxygen evolution reaction (OER) catalysis. X‐ray photoelectron spectroscopy, X‐ray absorption fine structure, and electron spin resonance results clearly reveal the formation of a considerable amount of nitrogen dopants and oxygen vacancies in N‐Co3O4@NC. The defect engineering of N‐Co3O4@NC makes it exhibit an overpotential of only 266 mV to reach 10 mA cm?2, a low Tafel slope of 54.9 mV dec?1 and superior catalytic stability for OER, which is comparable to that of commercial RuO2. Density functional theory calculations indicate N‐doping could promote catalytic activity via improving electronic conductivity, accelerating reaction kinetics, and optimizing the adsorption energy for intermediates of OER. Interestingly, N‐Co3O4@NC also shows a superior oxygen reduction reaction activity, making it a bifunctional electrocatalyst for zinc–air batteries. The zinc–air battery with the N‐Co3O4@NC cathode demonstrates superior efficiency and durability, showing the feasibility of N‐Co3O4/NC in electrochemical energy devices.  相似文献   

16.
A zeolitic‐imidazolate‐framework (ZIF) nanocrystal layer‐protected carbonization route is developed to prepare N‐doped nanoporous carbon/graphene nano‐sandwiches. The ZIF/graphene oxide/ZIF sandwich‐like structure with ultrasmall ZIF nanocrystals (i.e., ≈20 nm) fully covering the graphene oxide (GO) is prepared via a homogenous nucleation followed by a uniform deposition and confined growth process. The uniform coating of ZIF nanocrystals on the GO layer can effectively inhibit the agglomeration of GO during high‐temperature treatment (800 °C). After carbonization and acid etching, N‐doped nanoporous carbon/graphene nanosheets are formed, with a high specific surface area (1170 m2 g?1). These N‐doped nanoporous carbon/graphene nanosheets are used as the nonprecious metal electrocatalysts for oxygen reduction and exhibit a high onset potential (0.92 V vs reversible hydrogen electrode; RHE) and a large limiting current density (5.2 mA cm?2 at 0.60 V). To further increase the oxygen reduction performance, nanoporous Co‐Nx/carbon nanosheets are also prepared by using cobalt nitrate and zinc nitrate as cometal sources, which reveal higher onset potential (0.96 V) than both commercial Pt/C (0.94 V) and N‐doped nanoporous carbon/graphene nanosheets. Such nanoporous Co‐Nx/carbon nanosheets also exhibit good performance such as high activity, stability, and methanol tolerance in acidic media.  相似文献   

17.
Perovskite oxides have been explored as promising electrocatalysts for the oxygen evolution reaction (OER), while a lack of understanding of key factors impacting the catalytic activity restricts their further design and development. Here, for the first time, the contributions of oxygen vacancy (VO) and orbital occupancy of B‐site cations to the catalytic activity of NdNiO3 films are systematically investigated. It is found that OER activity follows a typical volcano‐shaped dependence on the oxygen pressure. In the range of 0.2–10 Pa, proper concentration of VO can provide a moderate bonding strength with intermediate hydroxyl OH* and the increased ratio of Ni3+/Ni2+ provides a more favorable occupancy of eg orbital for the catalytic activity; while in the range of 10–60 Pa, insufficient concentration of VO leads to an enhanced strength of hybridization between Ni 3d and O 2p band and thus deteriorated catalytic activity. The superior OER catalytic performance can be only achieved with both appropriate concentration of VO and the ratio of B‐site metal cations with different valences.  相似文献   

18.
The development of low‐cost, high‐performance, and stable electrocatalysts for the sluggish oxygen evolution reaction (OER) in water splitting is essential for renewable and clean energy technologies. Herein, the interconnected nanoarrays consisting of Co–Ni bimetallic metaphosphate nanoparticles embedded in a carbon matrix (Co2?xNixP4O12‐C) are fabricated through a mild phosphorylating process of cobalt–nickel zeolitic imidazolate frameworks (CoNi‐ZIF). Density functional theory calculations reveal moderate adsorption of oxygenated intermediates on the doping Ni site, and current density simulations imply homogeneous and higher current density due to the morphology integrity of the interconnected metaphosphate nanoarrays. As a consequence, the optimized Co1.6Ni0.4P4O12‐C affords a superior OER activity (η = 230 mV at 10 mA cm?2) and long‐term stability in alkaline media (1 m KOH) that are comparable to most reported catalysts. The strategy for balancing the doping effect and morphology effect provides a new perspective when designing and developing highly efficient electrocatalysts for energy conversion and storage applications.  相似文献   

19.
The exploring of catalysts with high‐efficiency and low‐cost for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the key issues for many renewable energy systems including fuel cells, metal–air batteries, and water splitting. Despite several decades pursuing, bifunctional oxygen catalysts with high catalytic performance at low‐cost, especially the one that could be easily scaled up for mass production are still missing and highly desired. Herein, a hybrid catalyst with NiCo alloy nanoparticles decorated on N‐doped carbon nanofibers is synthesized by a facile electrospinning method and postcalcination treatment. The hybrid catalyst NiCo@N‐C 2 exhibits outstanding ORR and OER catalytic performances, which is even surprisingly superior to the commercial Pt/C and RuO2 catalysts, respectively. The synergetic effects between alloy nanoparticles and the N‐doped carbon fiber are considered as the main contributions for the excellent catalytic activities, which include decreasing the intrinsic and charge transfer resistances, increasing C?C, graphitic‐N/pyridinic‐N contents in the hybrid catalyst. This work opens up a new way to fabricate high‐efficient, low‐cost oxygen catalysts with high production.  相似文献   

20.
Replacement of precious metals with earth‐abundant electrocatalysts for oxygen evolution reaction (OER) holds great promise for realizing practically viable water‐splitting systems. It still remains a great challenge to develop low‐cost, highly efficient, and durable OER catalysts. Here, the composition and morphology of Ni–Co bimetal phosphide nanocages are engineered for a highly efficient and durable OER electrocatalyst. The nanocage structure enlarges the effective specific area and facilitates the contact between catalyst and electrolyte. The as‐prepared Ni–Co bimetal phosphide nanocages show superior OER performance compared with Ni2P and CoP nanocages. By controlling the molar ratio of Ni/Co atoms in Ni–Co bimetal hydroxides, the Ni0.6Co1.4P nanocages derived from Ni0.6Co1.4(OH)2 nanocages exhibit remarkable OER catalytic activity (η = 300 mV at 10 mA cm?2) and long‐term stability (10 h for continuous test). The density‐functional‐theory calculations suggest that the appropriate Co doping concentration increases density of states at the Fermi level and makes the d‐states more close to Fermi level, giving rise to high charge carrier density and low intermedia adsorption energy than those of Ni2P and CoP. This work also provides a general approach to optimize the catalysis performance of bimetal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号