首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, bimetallic iron (Fe)–manganese (Mn) oxyhydroxide ((Fe1−x,Mnx)OOH, FeMnOOH) nanosheets on fluorine‐doped tin oxide conducting substrates and on semiconductor photoanodes are synthesized by a facile, room temperature, electroless deposition method as catalysts for both electrochemical and photo‐electrochemical (PEC) water splitting, respectively. Surprisingly, Mn‐doped FeOOH can significantly modulate the nanosheet morphology to increase the active surface area, boost more active sites, and augment the intrinsic activity by tuning the electronic structure of FeOOH. Due to the 2D nanosheet architecture, the optimized FeMnOOH exhibits superior electrochemical activity and outstanding durability for the oxygen evolution reaction with a low overpotential of 246 mV at 10 mA cm−2 and 414 mV at 100 mA cm−2, and long‐term stability for 40 h without decay, which is comparable to the best electrocatalysts for water oxidation reported in the literature. By integrating with semiconductor photoanodes (such as α‐Fe2O3 nanorod (NR) arrays), bimetallic FeMnOOH catalysts achieve solar‐driven water splitting with a significantly enhanced PEC performance (3.36 mA cm−2 at 1.23 V vs reversible hydrogen electrode (RHE)) with outstanding long‐term stability (≈8 h) compared to that of the bare Fe2O3 NR (0.92 mA cm−2 at 1.23 V vs RHE).  相似文献   

2.
TiO2‐based photoanodes have attracted extensive attention worldwide for photoelectrochemical (PEC) water splitting, but these materials still suffer from poor electron–hole separation and low photoconversion efficiency. Here, the high PEC water splitting activity and long‐term stability against photocorrosion of well‐aligned hierarchical TiO2@CoNi‐layered double hydroxides nanotube arrays (TiO2@CoNi‐LDHs NTAs) are reported. The typical TiO2@CoNi‐LDHs NTAs exhibits enhancing photocurrent density of 4.4 mA cm?2 at a potential of 1.23 V (vs reversible hydrogen electrode) under AM 1.5G simulated sunlight (100 mW cm?2), 3.3 times higher than that of the pristine TiO2 sample. Moreover, this hierarchical electrode displays excellent stability against photocorrosion with initial activity loss no more than 1.0% even after 10 h irradiation in Na2SO4 electrolyte solution (pH 6.8), much competitive to those reported TiO2‐based photoelectrodes. This work may offer a combinatorial synthesis strategy for the preparation of hierarchical architectures with high PEC performances.  相似文献   

3.
Bismuth vanadate (BiVO4) is a promising photoanode material for photoelectrochemical (PEC) water splitting. However, owing to the short carrier diffusion length, the trade‐off between sufficient light absorption and efficient charge separation often leads to poor PEC performance. Herein, a new electrodeposition process is developed to prepare bismuth oxide precursor films, which can be converted to transparent BiVO4 films with well‐controlled oxygen vacancies via a mild thermal treatment process. The optimized BiVO4 film exhibits an excellent back illumination charge separation efficiency mainly due to the presence of enriched oxygen vacancies which act as shallow donors. By loading FeOOH/NiOOH as the cocatalysts, the BiVO4 dual photoanodes exhibit a remarkable and highly stable photocurrent density of 5.87 mA cm?2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination. An artificial leaf composed of the BiVO4/FeOOH/NiOOH dual photoanodes and a single sealed perovskite solar cell delivers a solar‐to‐hydrogen conversion efficiency as high as 6.5% for unbiased water splitting.  相似文献   

4.
We explore conditions for achieving laser liftoff in epitaxially grown heterojunctions, in which single crystal thin films can be separated from their growth substrates using a selectively absorbing buried intermediate layer. Because this highly non‐linear process is subject to a variety of process instabilities, it is essential to accurately characterize the parameters resulting in liftoff. Here, we present an InP/InGaAs/InP heterojunction as a model system for such characterization. We show separation of InP thin films from single crystal InP growth substrates, wherein a ≈10 ns, Nd:YAG laser pulse selectively heats a coherently strained, buried InGaAs layer. We develop a technique to measure liftoff threshold fluences within an inhomogeneous laser spatial profile, and apply this technique to determine threshold fluences of the order 0.5 J cm?2 for our specimens. We find that the fluence at the InGaAs layer is limited by non‐linear absorption and InP surface damage at high powers, and measure the energy transmission in an InP substrate from 0 to 8 J cm?2. Characterization of the ejected thin films shows crack‐free, single crystal InP. Finally, we present evidence that the hot InGaAs initiates a liquid phase front that travels into the InP substrate during liftoff.
  相似文献   

5.
The design of cost‐efficient earth‐abundant catalysts with superior performance for the electrochemical water splitting is highly desirable. Herein, a general strategy for fabricating superior bifunctional water splitting electrodes is reported, where cost‐efficient earth‐abundant ultrathin Ni‐based nanosheets arrays are directly grown on nickel foam (NF). The newly created Ni‐based nanosheets@NF exhibit unique features of ultrathin building block, 3D hierarchical structure, and alloy effect with the optimized Ni5Fe layered double hydroxide@NF (Ni5Fe LDH@NF) exhibiting low overpotentials of 210 and 133 mV toward both oxygen evolution reaction and hydrogen evolution reaction at 10 mA cm?2 in alkaline condition, respectively. More significantly, when applying as the bifunctional overall water splitting electrocatalyst, the Ni5Fe LDH@NF shows an appealing potential of 1.59 V at 10 mA cm?2 and also superior durability at the very high current density of 50 mA cm?2.  相似文献   

6.
Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm?2) and oxygen evolution reaction (235 mV@10 mA cm?2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm?2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.  相似文献   

7.
The growth and characterization of an n‐GaP/i‐GaNP/p+‐GaP thin film heterojunction synthesized using a gas‐source molecular beam epitaxy (MBE) method, and its application for efficient solar‐driven water oxidation is reported. The TiO2/Ni passivated n‐GaP/i‐GaNP/p+‐GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO2/Ni‐coated n‐GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm?2, leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm?2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm?2 for the coated n‐GaP and n‐GaP/i‐GaNP/p+‐GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon‐to‐current efficiency (ABPE) of 1.9% while the ABPE of the coated n‐GaP sample is almost zero. Furthermore, the coated n‐GaP/i‐GaNP/p+‐GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon‐to‐current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low‐bias performance and broad absorption of the wide‐bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.  相似文献   

8.
Direct laser interference patterning (DLIP) is used to create periodic crater‐ and pillar‐like patterns on titanium surfaces. A Nd:YAG laser operating at 532 nm wavelength with a pulse duration of 8 ns and the ability to control the polarization of each individual beam is used for the laser patterning process. The generated periodic patterns with spatial periods of 5 and 10 μm are produced with energy densities between 0.3 and 5.1 J cm?2 with a single laser pulse. By varying the polarization of each interfering beam and the energy density, various forms of the occurring topography are observed due to the different shape of the interference intensity pattern and the solidification front of the molten material at the maxima positions. The characterization of the surface chemistry shows that the laser treatment increases the relative content of alumina in the reactive layer from 36% to 51%. The structural analysis of pillar‐like patterned surface shows no changes in microstructure after the laser treatment. Contact angles of 47° ± 7° down to 6° ± 4° are measured on both, crater‐ and pillar‐like surfaces which are significantly lower compared to the untreated reference (79° ± 2°).
  相似文献   

9.
Dense and aligned TiO2 nanorod arrays are fabricated using oblique‐angle deposition on indium tin oxide (ITO) conducting substrates. The TiO2 nanorods are measured to be 800–1100 nm in length and 45–400 nm in width with an anatase crystal phase. Coverage of the ITO is extremely high with 25 × 106 mm?2 of the TiO2 nanorods. The first use of these dense TiO2 nanorod arrays as working electrodes in photoelectrochemical (PEC) cells used for the generation of hydrogen by water splitting is demonstrated. A number of experimental techniques including UV/Vis absorption spectroscopy, X‐ray diffraction, high‐resolution scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and photoelectrochemistry are used to characterize their structural, optical, and electronic properties. Both UV/Vis and incident‐photon‐to‐current‐efficiency measurements show their photoresponse in the visible is limited but with a marked increase around ≈400 nm. Mott–Schottky measurements give a flat‐band potential (VFB) of +0.20 V, a carrier density of 4.5 × 1017 cm?3, and a space‐charge layer of 99 nm. Overall water splitting is observed with an applied overpotential at 1.0 V (versus Ag/AgCl) with a photo‐to‐hydrogen efficiency of 0.1%. The results suggest that these dense and aligned one‐dimensional TiO2 nanostructures are promising for hydrogen generation from water splitting based on PEC cells.  相似文献   

10.
Exploring high‐efficiency, stable, and cost‐effective bifunctional electrocatalysts for overall water splitting is greatly desirable and challenging. Herein, a newly designed hybrid catalyst with Cr‐doped FeNi–P nanoparticles encapsulated into N‐doped carbon nanotubes (Cr‐doped FeNi–P/NCN) with unprecedented electrocatalytic activity is developed by a simple one‐step heating treatment. The as‐synthesized Cr‐doped FeNi–P/NCN with moderate Cr doping exhibits admirable oxygen evolution reaction and hydrogen evolution reaction activities with overpotentials of 240 and 190 mV to reach a current density of 10 mA cm?2 in 1 m KOH solution. When used in overall water splitting as a bifunctional catalyst, it needs only 1.50 V to give a current density of 10 mA cm?2, which is superior to its typically integrated Pt/C and RuO2 counterparts (1.54 V @ 10 mA cm?2). Density functional theory calculation confirms that Cr doping into a FeNi‐host can effectively alter the relative Gibbs adsorption energy and reduces the theoretical overpotential. Additionally, the synergetic effects between Cr‐doped FeNi–P nanoparticles and NCNs are regarded as significant contributors to accelerate charge transfer and promote electrocatalytic activity in hybrid catalysts.  相似文献   

11.
To achieve excellent photoelectrochemical water‐splitting activity, photoanode materials with high light absorption and good charge‐separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen‐vacancy concentration (8.7%) exhibits high light‐absorption and good charge‐separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm?2 at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm?2 and stable gas production with an average solar‐to‐hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water‐splitting system.  相似文献   

12.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

13.
Well‐designed hybrid materials based on noble metal‐free elements have great potential to generate hydrogen (H2) and oxygen (O2) sustainably via overall water splitting for developing practical energy‐related technologies. Herein, an accessible method is presented to synthesize nickel diselenide (NiSe2) ultrathin nanowires decorated with amorphous nickel oxide nanoparticles (NiOx NPs) as multifunctional electrocatalysts (NSWANs) for hydrogen and oxygen evolution reaction (HER and OER). The NSWANs exhibit quite low HER and OER overpotentials of 174 and 295 mV, respectively, holding the current density of 20 mA cm?2 for 24 h continuous operations in alkaline media. Meanwhile, a cell voltage of 1.547 V at the current density of 10 mA cm?2 for overall water splitting has been achieved by the NSWANs for the practical application, which could maintain fascinating activity of 20 mA cm?2 for 72 h without degradation. The decorated NiOx NPs not only prevent the NiSe2 from further oxidation but also expose requisite active sites for electrocatalytic process. It is believed that this study may provide a valuable strategy to design high‐efficiency electrocatalysts and expand the applications of selenide‐based materials.  相似文献   

14.
Among the bifunctional catalysts for water splitting, recently emerged transition‐metal single‐atom catalysts are theoretically considered to possess high potential, while the experimental activity is not satisfactory yet. Herein, an exceptionally efficient trifunctional metal–nitrogen–carbon (M–N–C) catalyst electrode, composed of a hierarchical carbon matrix embedding isolated nickel atoms with nickel–iron (NiFe) clusters, is presented. 1D microfibers and nanotubes grow sequentially from 2D nanosheets as sacrificial templates via two stages of solution‐ and solid‐phase reactions to form a 1D hierarchy. Exceptionally efficient bifunctional activity with an overpotential of only 13 mV at 10 mA cm?2 toward hydrogen evolution reaction (HER) and an overpotential of 210 mV at 30 mA cm?2 toward oxygen evolution reaction (OER) is obtained, surpassing each monofunctional activity ever reported. More importantly, an overpotential of only 126 and 326 mV is required to drive 500 mA cm?2 toward the HER and OER, respectively. For the first time, industrial‐scale water splitting with two bifunctional catalyst electrodes with a current density of 500 mA cm?2 at a potential of 1.71 V is demonstrated. Lastly, trifunctional catalytic activity including oxygen reduction reaction is also proven with a half‐wave potential at 0.848 V.  相似文献   

15.
Exploring effective electrocatalysts is a crucial requirement for boosting the efficiency of water splitting to obtain clean fuels. Here, a self‐templating strategy is reported to synthesize Ni–Fe mixed diselenide cubic nanocages for the electrocatalytic oxygen evolution reaction (OER). The diselenide nanocages are derived from corresponding Prussian‐blue analog nanocages, which are first obtained by treating the nanocube precursor with a site‐selective ammonia etchant. The resulting Ni–Fe mixed diselenide nanocages perform as a superior OER electrocatalyst, which affords a current density of 10 mA cm?2 at a small overpotential of 240 mV; a high current density, mass activity, and turnover frequency of 100 mA cm?2, 1000 A g?1, and 0.58 s?1, respectively, at the overpotential of 270 mV; a Tafel slope as small as 24 mV dec?1; and excellent stability in alkaline medium.  相似文献   

16.
Developing non‐noble‐metal electrocatalysts with high activity and low cost for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for improving the generation of H2 fuel by electrocatalytic water‐splitting. This study puts forward a new N‐anion‐decorated Ni3S2 material synthesized by a simple one‐step calcination route, acting as a superior bifunctional electrocatalyst for the OER/HER for the first time. The introduction of N anions significantly modifies the morphology and electronic structure of Ni3S2, bringing high surface active sites exposure, enhanced electrical conductivity, optimal HER Gibbs free‐energy (ΔGH*), and water adsorption energy change (ΔGH2O*). Remarkably, the obtained N‐Ni3S2/NF 3D electrode exhibits extremely low overpotentials of 330 and 110 mV to reach a current density of 100 and 10 mA cm?2 for the OER and HER in 1.0 m KOH, respectively. Moreover, an overall water‐splitting device comprising this electrode delivers a current density of 10 mA cm?2 at a very low cell voltage of 1.48 V. Our finding introduces a new way to design advanced bifunctional catalysts for water splitting.  相似文献   

17.
Exploring highly efficient and low‐cost electrocatalysts for electrochemical water splitting is of importance for the conversion of intermediate energy. Herein, the synthesis of dual‐cation (Fe, Co)‐incorporated NiSe2 nanosheets (Fe, Co‐NiSe2) and systematical investigation of their electrocatalytic performance for water splitting as a function of the composition are reported. The dual‐cation incorporation can distort the lattice and induce stronger electronic interaction, leading to increased active site exposure and optimized adsorption energy of reaction intermediates compared to single‐cation‐doped or pure NiSe2. As a result, the obtained Fe0.09Co0.13‐NiSe2 porous nanosheet electrode shows an optimized catalytic activity with a low overpotential of 251 mV for oxygen evolution reaction and 92 mV for hydrogen evolution reaction (both at 10 mA cm?2 in 1 m KOH). When used as bifunctional electrodes for overall water splitting, the current density of 10 mA cm?2 is achieved at a low cell voltage of 1.52 V. This work highlights the importance of dual‐cation doping in enhancing the electrocatalyst performance of transition metal dichalcogenides.  相似文献   

18.
With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)‐coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water‐harvesting efficiency in comparison with the silica PDMS‐coated superhydrophobic surface and the Pt nanoparticles‐coated superhydrophilic surface. The maximum water‐harvesting efficiency can reach about 5.3 g cm?2 h?1. Both the size and the percentage of the Pt‐coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water‐harvesting efficiency. The present water‐harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world.  相似文献   

19.
To generate hydrogen, which is a clean energy carrier, a combination of electrolysis and renewable energy sources is desirable. In particular, for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in electrolysis, it is necessary to develop nonprecious, efficient, and durable catalysts. A robust nonprecious copper–iron (CuFe) bimetallic composite is reported that can be used as a highly efficient bifunctional catalyst for overall water splitting in an alkaline medium. The catalyst exhibits outstanding OER and HER activity, and very low OER and HER overpotentials (218 and 158 mV, respectively) are necessary to attain a current density of 10 mA cm?2. When used in a two‐electrode water electrolyzer system for overall water splitting, it not only achieves high durability (even at a very high current density of 100 mA cm?2) but also reduces the potential required to split water into oxygen and hydrogen at 10 mA cm?2 to 1.64 V for 100 h of continuous operation.  相似文献   

20.
Gallium arsenide (GaAs) provides a suitable bandgap (1.43 eV) for solar spectrum absorption and allows a larger photovoltage compared to silicon, suggesting great potential as a photoanode toward water splitting. Photocorrosion under water oxidation condition, however, leads to decomposition or the formation of an insulating oxide layer, which limits the photoelectrochemical performance and stability of GaAs. In this work, a self‐limiting electrodeposition method of Ni on GaAs is reported to either generate ultra‐thin continuous film or nanoislands with high particle density by controlling deposition time. The self‐limiting growth mechanism is validated by potential transients, X‐ray photoelectron spectroscopy composition and depth profile measurements. This deposition method exhibits a rapid nucleation, forms an initial metallic layer followed by a hydroxide/oxyhydroxide nanofilm on the GaAs surface and is independent of layer thickness versus deposition time when coalescence is reached. A photocurrent up to 8.9 mA cm?2 with a photovoltage of 0.11 V is obtained for continuous ultrathin films, while a photocurrent density of 9.2 mA cm?2 with a photovoltage of 0.50 V is reached for the discontinuous nanoislands layers in an aqueous solution containing the reversible redox couple K3Fe(CN)6/K4Fe(CN)6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号