首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase change materials provide unique reconfigurable properties for photonic applications that mainly arise from their exotic characteristic to reversibly switch between the amorphous and crystalline nonvolatile phases. Optical pulse based reversible switching of nonvolatile phases is exploited in various nanophotonic devices. However, large area reversible switching is extremely challenging and has hindered its translation into a technologically significant terahertz spectral domain. Here, this limitation is circumvented by exploiting the semiconducting nature of germanium antimony telluride (GST) to achieve dynamic terahertz control at picosecond timescales. It is also shown that the ultrafast response can be actively altered by changing the crystallographic phase of GST.  The ease of fabrication of phase change materials allows for the realization of a variable ultrafast terahertz modulator on a flexible platform. The rich properties of phase change materials combined with the diverse functionalities of metamaterials and all-optical ultrafast control enables an ideal platform for design of efficient terahertz communication devices, terahertz neuromorphic photonics, and smart sensor systems.  相似文献   

2.
Research on van der Waals heterostructures based on stacked 2D atomic crystals is intense due to their prominent properties and potential applications for flexible transparent electronics and optoelectronics. Here, nonvolatile memory devices based on floating‐gate field‐effect transistors that are stacked with 2D materials are reported, where few‐layer black phosphorus acts as channel layer, hexagonal boron nitride as tunnel barrier layer, and MoS2 as charge trapping layer. Because of the ambipolar behavior of black phosphorus, electrons and holes can be stored in the MoS2 charge trapping layer. The heterostructures exhibit remarkable erase/program ratio and endurance performance, and can be developed for high‐performance type‐switching memories and reconfigurable inverter logic circuits, indicating that it is promising for application in memory devices completely based on 2D atomic crystals.  相似文献   

3.
Photonic spin-orbit interactions describe the interactions between spin angular momentum and orbital angular momentum of photons, which play essential roles in subwavelength optics. However, the influence of frequency dispersion on photonic angular-momentum coupling is rarely studied. Here, by elaborately designing the contribution of the geometric phase and waveguide propagation phase, the dispersion-enabled symmetry switching of photonic angular-momentum coupling is experimentally demonstrated. This notion may induce many exotic phenomena and be found in enormous applications, such as the spin-Hall effect, optical calculation, and wavelength division multiplexing systems. As a proof-of-concept demonstration, two metadevices, a multi-channel vectorial vortex beam generator and a phase-only hologram, are applied to experimentally display optical double convolution, which may offer additional degrees of freedom to accelerate computing and a miniaturization configuration for optical convolution without collimation operation. These results may provide a new opportunity for complex vector optical field manipulation and calculation, optical information coding, light-matter interaction manipulation, and optical communication.  相似文献   

4.
杨振  王栎沣  靳慧敏  王志渊  徐培鹏  张巍  陈伟伟  戴世勋 《红外与激光工程》2022,51(3):20220152-1-20220152-21
硫系玻璃具有超宽的红外透过光谱范围、较高的线性折射率、极高的光学非线性和超快的非线性响应,近年来在集成光子器件研究领域备受关注。首先回顾了硫系玻璃集成光波导的制备,综述了硫系集成光子器件在红外传感和高性能非线性应用方面取得的进展,然后介绍了硫系相变光子器件在光开关、光存储和光计算等方面的前沿进展,最后对目前硫系玻璃光子器件研究存在的问题进行了归纳,并对未来的研究方向进行了展望。  相似文献   

5.
The operation of a single class of optical materials in both a volatile and nonvolatile manner is becoming increasingly important in many applications. This is particularly true in the newly emerging field of photonic neuromorphic computing, where it is desirable to have both volatile (short‐term transient) and nonvolatile (long‐term static) memory operation, for instance, to mimic the behavior of biological neurons and synapses. The search for such materials thus far have focused on phase change materials where typically two different types are required for the two different operational regimes. In this paper, a tunable volatile/nonvolatile response is demonstrated in a photonic phase‐change memory cell based on the commonly employed nonvolatile material Ge2Sb2Te5 (GST). A time‐dependent, multiphysics simulation framework is developed to corroborate the experimental results, allowing us to spatially resolve the recrystallization dynamics within the memory cell. It is then demonstrated that this unique approach to photonic memory enables both data storage with tunable volatility and detection of coincident events between two pulse trains on an integrated chip. Finally, improved efficiency and all‐optical routing with controlled volatility are demonstrated in a ring resonator. These crucial results show that volatility is intrinsically tunable in normally nonvolatile GST which can be used in both regimes interchangeably.  相似文献   

6.
Phase‐change materials (PCMs) are seeing tremendous interest for their use in reconfigurable photonic devices; however, the most common PCMs exhibit a large absorption loss in one or both states. Here, Sb2S3 and Sb2Se3 are demonstrated as a class of low loss, reversible alternatives to the standard commercially available chalcogenide PCMs. A contrast of refractive index of Δn = 0.60 for Sb2S3 and Δn = 0.77 for Sb2Se3 is reported, while maintaining very low losses (k < 10?5) in the telecommunications C‐band at 1550 nm. With a stronger absorption in the visible spectrum, Sb2Se3 allows for reversible optical switching using conventional visible wavelength lasers. Here, a stable switching endurance of better than 4000 cycles is demonstrated. To deal with the essentially zero intrinsic absorption losses, a new figure of merit (FOM) is introduced taking into account the measured waveguide losses when integrating these materials onto a standard silicon photonics platform. The FOM of 29 rad phase shift per dB of loss for Sb2Se3 outperforms Ge2Sb2Te5 by two orders of magnitude and paves the way for on‐chip programmable phase control. These truly low‐loss switchable materials open up new directions in programmable integrated photonic circuits, switchable metasurfaces, and nanophotonic devices.  相似文献   

7.
A flexible and transparent resistive switching memory based on a natural organic polymer for future flexible electronics is reported. The device has a coplanar structure of Mg/Ag‐doped chitosan/Mg on plastic substrate, which shows promising nonvolatile memory characteristics for flexible memory applications. It can be easily fabricated using solution processes on flexible substrates at room temperature and indicates reliable memory operations. The elucidated origin of the bipolar resistive switching behavior is attributed to trap‐related space‐charge‐limited conduction in high resistance state and filamentary conduction in low resistance state. The fabricated devices exhibit memory characteristics such as low power operation and long data retention. The proposed biocompatible memory device with transient electrodes is based on naturally abundant materials and is a promising candidate for low‐cost memory applications. Devices with natural substrates such as chitosan and rice paper are also fabricated for fully biodegradable resistive switching memory. This work provides an important step toward developing a flexible resistive switching memory with natural polymer films for application in flexible and biodegradable nanoelectronic devices.  相似文献   

8.
Switching and memory effects in chalcogenide glassy semiconductors have been known for nearly fifty years. However, the physics of these effects remains unclear. Recent interest in this problem is caused by active developments of a new generation nonvolatile memory based on the chalcogenide glass-crystal phase transition. In this paper, we review the main experimental features of switching and memory effects, review and analyze the models of the switching effect. Consider the main characteristics of phase-change memory cells made of various materials. On these grounds, the main advantages of modern phase-change memory cells are presented in comparison with first-generation memory elements.  相似文献   

9.
Nonvolatile logic devices have attracted intensive research attentions recently for energy efficiency computing, where data computing and storage can be realized in the same device structure. Various approaches have been adopted to build such devices; however, the functionality and versatility are still very limited. Here, 2D van der Waals heterostructures based on direct bandgap materials black phosphorus and rhenium disulfide for the nonvolatile ternary logic operations is demonstrated for the first time with the ultrathin oxide layer from the black phosphorus serving as the charge trapping as well as band‐to‐band tunneling layer. Furthermore, an artificial electronic synapse based on this heterostructure is demonstrated to mimic trilingual synaptic response by changing the input base voltage. Besides, artificial neural network simulation based on the electronic synaptic arrays using the handwritten digits data sets demonstrates a high recognition accuracy of 91.3%. This work provides a path toward realizing multifunctional nonvolatile logic‐in‐memory applications based on novel 2D heterostructures.  相似文献   

10.
Above a critical temperature, high‐performance fibers may lose their mechanical properties resulting in catastrophic events of damage when, e.g., used as load‐carrying ropes. Here, a method to functionalize polymer fibers with thermochromic optical coatings that enable signaling of damaging thermal history is introduced. These smart coatings are comprised of an index‐tunable anti‐reflection coating based on chalcogenide phase change materials (PCM). It is demonstrated that the insulator?metal phase transition of these materials can be aligned with the critical deterioration temperature of both polyethylene terephthalate (PET) monofilaments and liquid‐crystal polyester (LCP) yarns by composition tuning. The carefully designed optical system amplifies the change in optical properties of its constituents upon phase change. The thermal and mechanical degradation of these fibers can thus be monitored and displayed by eye.  相似文献   

11.
硫族化合物合金GeSbTe(GST)和AgInSbTe等相变材料(PCM)已经在光存储技术中得到广泛的应用,用相变电存储器件作为闪存的替代产品已成为国内外研究的热点.与此同时,相变材料在一些领域也取得了新的应用.总结了近年来国内外在相变材料的存储机制、光/电存储性能的改进以及新应用等方面的最新研究成果,并展望了相变材料的研究前景.  相似文献   

12.
Recent increases in the demand for mobile devices have stimulated the development of nonvolatile memory devices with high performance. In this Communication, we describe the fabrication of low‐cost, high‐performance, digital nonvolatile memory devices based on semiconducting polymers, poly(o‐anthranilic acid) and poly(o‐anthranilic acid‐co‐aniline). These memory devices have ground‐breaking and novel current–voltage switching characteristics. The devices are switchable in a very low voltage range (which is much less than those of all other devices reported so far) with a very high ON/OFF current ratio (which is on the order of 105). The low critical voltages have the advantage for nonvolatile memory device applications of low operation voltages and hence low power consumption. With this very low power consumption, the devices demonstrate in air ambient to have very stable ON‐ and OFF‐states without any degradation for a very long time (which has been confirmed up to one year so far) and to be repeatedly written, read and erased. Our study proposes that the ON/OFF switching of the devices is mainly governed by a filament mechanism. The high ON/OFF switching ratio and stability of these devices, as well as their repeatable writing, reading and erasing capability with low power consumption, opens up the possibility of the mass production of high performance digital nonvolatile polymer memory devices with low cost. Further, these devices promise to revolutionize microelectronics by providing extremely inexpensive, lightweight, and versatile components that can be printed onto plastics, glasses or metal foils.  相似文献   

13.
Phase-change nonvolatile memory cell elements composed of Sb2Te3 chalcogenide have been fabricated by using the focused ion beam method. The contact size between the Sb2Te3 phase change film and electrode film in the cell element is 2826 nm2 (diameter: 60 nm). The thickness of the Sb2Te3 chalcogenide film is 40 nm. The threshold switching current of about 0.1 mA was obtained. A RESET pulse width as short as 5 ns and the SET pulse width as short as 22 ns for Sb2Te3 chalcogenide can be obtained. At least 1000 cycle times with a RESET/SET resistance ratio >30 times is achieved for Sb2Te3 chalcogenide C-RAM cell element.  相似文献   

14.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

15.
光控相控阵雷达发展动态和实现中的关键技术   总被引:11,自引:0,他引:11       下载免费PDF全文
何子述  金林  韩蕴洁  严济鸿 《电子学报》2005,33(12):2191-2195
本文讨论了光控相控阵雷达的原理和发展现状,介绍了光控技术在宽带宽角扫描相控阵雷达中的应用和优点,详细阐述了不同光实时延迟线(OTTD)的主要构成原理和技术特点,讨论了雷达微波信号的光调制技术和探测技术现状,指出了光控相控阵雷达技术可能的应用方向.文中重点讨论了光控相控阵雷达实现中需解决的关键技术,包括总体设计方案中的系统指标分配,雷达阵面结构设计时光器件温度特性的考虑,微波信号光纤传输中的幅相一致性、动态范围、非线性相位等,OTTD设计加工中的波束切换时间、插入损耗、隔离度、延时精度等.针对OTTD加工中难免存在的加工误差,文中提出了子阵OTTD与阵元移相器联合波控的方法.  相似文献   

16.
Reversible magnetic control by electrical means, which is highly desired from the viewpoint of fundamentals and technological applications such as data storage devices, has been a challenging topic. In this study, the authors demonstrate in situ magnetic phase switching between the ferrimagnetic and paramagnetic states of an electron‐donor/‐acceptor metal‐organic framework (D/A‐MOF) using band‐filling control mediated by the Li+‐ion migration that accompanies redox reactions, i.e., “magneto‐ionic control”. By taking advantage of the rechargeability of lithium‐ion battery systems, in which Li+‐ions and electrons are simultaneously inserted into/extracted from a cathode material, the reversible control of nonvolatile magnetic phases in a D/A‐MOF has been achieved. This result demonstrates that the combination of a redox‐active MOF with porous flexibility and ion‐migration capability enables the creation of new pathways toward magneto‐electric coupling devices in the field of ionics.  相似文献   

17.
谢世钟 《电信科学》2002,18(9):29-33
光网络正在向高速大容量、良好的扩展性和智能化的方向发展。自动交换光网络的出现是光传送网技术的重要突破,光电子器件功能的增强与性能的提高将对其实现与发展起决定性作用。本文介绍了自动交换光网络中一些光电子器件的重要特性和发展趋势。  相似文献   

18.
Spintronics     
Investigations of the dynamics of spin-polarized electronic current through and near materials with spin-dependent electronic structures have created a rich new field dubbed "spintronics". The implications of spintronics research extend deep into the realm of fundamental material properties, yet spintronics applications have also revolutionized the magnetic-storage industry by providing efficient room-temperature magnetic sensors. Control of nonequilibrium spin-polarized populations of electrons through and near magnets has led to the dominance of linear (resistive) spintronic devices for magnetic readout in commercial magnetic storage. Rapid progress in understanding the fundamental physics of nonlinear spin-polarized electronic transport in metals and semiconductors suggests new applications for spintronic devices in fast nonvolatile memory as well as logic devices, with or without magnetic materials or magnetic fields. Ongoing study of the interaction between such spintronic elements and optical fields, particularly in semiconductors, promises the future development of optical spintronic devices  相似文献   

19.
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested consisted of GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, most likely due to the voltage induced movement of either Sn or Te into the Ge-chalcogenide layer.  相似文献   

20.
The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号