首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Great attention to cost‐effective high‐efficiency solar power conversion of trihalide perovskite solar cells (PSCs) has been hovering at high levels in the recent 5 years. Among PSC devices, admittedly, TiO2 is the most widely used electron transport layer (ETL); however, its low mobility which is even less than that of CH3NH3PbI3 makes it not an ideal material. In principle, SnO2 with higher electron mobility can be regarded as a positive alternative. Herein, a SnO2 nanocolloid sol with ≈3 nm in size synthesized at 60 °C was spin‐coated onto the fuorine‐doped tin oxide (FTO) glass as the ETL of planar CH3NH3PbI3 perovskite solar cells. TiCl4 treatment of SnO2‐coated FTO is found to improve crystallization and increase the surface coverage of perovskites, which plays a pivotal role in improving the power conversion efficiency (PCE). In this report, a champion efficiency of 14.69% (Jsc = 21.19 mA cm?2, Voc = 1023 mV, and FF = 0.678) is obtained with a metal mask at one sun illumination (AM 1.5G, 100 mW cm?2). Compared to the typical TiO2, the SnO2 ETL efficiently facilitates the separation and transportation of photogenerated electrons/holes from the perovskite absorber, which results in a significant enhancement of photocurrent and PCE.  相似文献   

2.
A facile approach to precisely control the perovskite grain sizes is proposed and demonstrated for high‐performance photovoltaic (PV) solar cells. With the introduction of various amounts of NH4H2PO2 (AHP) additives into the PbI2/CH3NH3I precursors, the grain scale of CH3NH3PbI3 films can be finely turned from hundreds of nanometer to micrometer scale, allowing evaluating the effects of crystalline grain boundary on trap densities, charge recombination, and PV device performance. The X‐ray diffraction and X‐ray photoelectron spectroscopy measurements indicate that the formation of intermediates plays a key role in assisting the perovskite crystal growth. The optimized devices show much larger open‐circuit voltages (VOC) up to 1.10 ± 0.02 V and significantly enhance power conversion efficiencies (PCEs) of 16.5 ± 0.7%, as compared to the control devices with PCE of 9.4 ± 1.0% and VOC of 1.00 ± 0.03 V. Further investigations confirm that the boosted PV performance origins from the decreased defect densities due to enlarged grain sizes. It is also demonstrated that the approach is general and applicable to other perovskite systems, e.g., HC(NH2)2PbI3. The results suggest the promising application of AHP in achieving high‐performance perovskite PV devices, and shed light on understanding the grain boundary effects on perovskite optoelectronics.  相似文献   

3.
To achieve high‐performance perovskite solar cells, especially with mesoscopic cell structure, the design of the electron transport layer (ETL) is of paramount importance. Highly branched anatase TiO2 nanowires (ATNWs) with varied orientation are grown via a facile one‐step hydrothermal process on a transparent conducting oxide substrate. These films show good coverage with optimization obtained by controlling the hydrothermal reaction time. A homogeneous methyl­ammonium lead iodide (CH3NH3PbI3) perovskite thin film is deposited onto these ATNW films forming a bilayer architecture comprising of a CH3NH3PbI3 sensitized ATNW bottom layer and a CH3NH3PbI3 capping layer. The formation, grain size, and uniformity of the perovskite crystals strongly depend on the degree of surface coverage and the thickness of the ATNW film. Solar cells constructed using the optimized ATNW thin films (220 nm in thickness) yield power conversion efficiencies up to 14.2% with a short‐circuit photocurrent density of 20.32 mA cm?2, an open‐circuit photovoltage of 993 mV, and a fill factor of 0.70. The dendritic ETL and additional perovskite capping layer efficiently capture light and thus exhibit a superior light harvesting efficiency. The ATNW film is an effective hole‐blocking layer and efficient electron transport medium for excellent charge separation and collection within the cells.  相似文献   

4.
Enhancing open‐circuit voltage in CH3NH3PbI3(Cl) perovskite solar cells has become a major challenge for approaching the theoretical limit of the power conversion efficiency. Here, for the first time, it is demonstrated that the synergistic effect of PbI2 passivation and chlorine incorporation via controlling the molar ratio of PbI2, PbCl2 (or MACl), and MAI in the precursor solutions, boosts the open‐circuit voltage of CH3NH3PbI3(Cl) perovskite solar cells over 1.15 V in both mesoscopic and inverted planar perovskite solar cells. Such high open‐circuit voltage can be attributed to the enhanced photoluminescence emission and carrier lifetime associated with the reduced trap densities. The morphology and composition analysis using scanning electron microscopy, X‐ray diffraction measurements, and energy dispersive X‐ray spectroscopy confirm the high quality of the optimized CH3NH3PbI3(Cl) perovskite film. On this basis, record‐high efficiencies of 16.6% for nonmetal‐electrode all‐solution‐processed perovskite solar cells and 18.4% for inverted planar perovskite solar cells are achieved.  相似文献   

5.
Organic–inorganic halide hybrid perovskite materials are promising materials for X‐ray and photon detection due to their superior optoelectronic properties. Single‐crystal (SGC) perovskites have increasingly attracted attention due to their substantially low crystal defects, which contribute to improving the figures of merit of the devices. Cuboid CH3NH3PbI3 SGC with the naturally favorable geometry for device fabrication is rarely reported in X‐ray and photon detection application. The concept of seed dissolution‐regrowth to improve crystal quality of cuboid CH3NH3PbI3 SGC is proposed and a fundamental understanding of the nucleation and growth is provided thermodynamically. The X‐ray detector fabricated from cuboid CH3NH3PbI3 SGC demonstrates the firstly reported high sensitivity of 968.9 µC?1 Gy?1 cm?2 under ?1 V bias. The results also show that the favorable crystal orientation and high quality of cuboid CH3NH3PbI3 leads to better responsivity and faster response speed than the more common dodecahedral CH3NH3PbI3 in photodetection. Consequently, the work paves a way to synthesize high‐quality perovskite SGCs and benefits the application of MAPbI3 SGCs with preferred crystal orientation and favorable crystal geometry for emerging device applications.  相似文献   

6.
CH3NH3PbI3‐xClx is a commonly used chemical formula to represent the methylammonium lead halide perovskite fabricated from mixed chlorine‐ and iodine‐containing salt precursors. Despite the rapid progress in improving its photovoltaic efficiency, fundamental questions remain regarding the atomic ratio of Cl in the perovskite as well as the reaction mechanism that leads to its formation and crystallization. In this work we investigated these questions through a combination of chemical, morphological, structural and thermal characterizations. The elemental analyses reveal unambiguously the negligible amount of Cl atoms in the CH3NH3PbI3‐xClx perovskite. By studying the thermal characteristics of methylammonium halides as well as the annealing process in a polymer/perovskite/FTO glass structure, we show that the formation of the CH3NH3PbI3‐xClx perovskite is likely driven by release of gaseous CH3NH3Cl (or other organic chlorides) through an intermediate organometal mixed halide phase. Furthermore, the comparative study on CH3NH3I/PbCl2 and CH3NH3I/PbI2 precursor combinations with different molar ratios suggest that the initial introduction of a CH3NH3+ rich environment is critical to slow down the perovskite formation process and thus improve the growth of the crystal domains during annealing; accordingly, the function of Cl? is to facilitate the release of excess CH3NH3+ at a relatively low annealing temperatures.  相似文献   

7.
The booming development of organometal halide perovskites has prompted the exploration of morphology‐engineering strategies to improve their performance in optoelectronic applications. However, the preparation of optoelectronic devices of perovskites with complex architectures and desirable properties is still highly challenging. Herein, novel CH3NH3PbI3 nanonets and nanobowl arrays are fabricated facilely by using monolayer colloidal crystal (MCC) templates on different substrates. Specifically, highly ordered CH3NH3PbI3 nanonets with high crystallinity are fabricated on a variety of flat substrates, whereas regular CH3NH3PbI3 nanobowl arrays are produced on a coarse substrate. The photodetection performance of the CH3NH3PbI3 nanonet‐based photodetectors is significantly enhanced compared to the photodetectors based on conventional CH3NH3PbI3 compact films. Particularly, the nanonet photodetectors exhibit a high responsivity (10.33 A W?1 under 700 nm monochromatic light), which is six times higher than that for the compact CH3NH3PbI3 film devices, fast response speed, and good stability. Owing to the two‐dimensional arrayed structure, the CH3NH3PbI3 nanonets exhibit an enhanced light harvesting ability and offer direct carrier transport pathways. Meanwhile, the MCC template brings about larger grain sizes with enhanced crystallinity. Furthermore, the perovskite nanonets can be formed on a flexible polyethylene terephthalate substrate for the fabrication of promising flexible nanonet photodetectors.  相似文献   

8.
Perovskite photovoltaics have drawn great attention in both academic and industrial sectors in the past decade. To date, impressive device performance has been achieved in state‐of‐the‐art device architectures through morphological manipulation and generic interface engineering. In this study, enhanced device performance of perovskite photovoltaics by magnetic field‐aligned CH3NH3PbI3‐mixed Fe3O4 magnetic nanoparticles (CH3NH3PbI3:Fe3O4) composite thin films is reported. It is found that magnetic field‐aligned CH3NH3PbI3:Fe3O4 composite thin films possess superior film morphology, boosted and balanced charge carrier mobility, and suppressed trap density. Moreover, perovskite photovoltaics by magnetic field‐aligned CH3NH3PbI3:Fe3O4 composite thin films exhibit suppressed charge carrier recombination and shorter charge carrier extraction time. As a result, perovskite solar cells by magnetic field‐aligned CH3NH3PbI3:Fe3O4 composite thin films exhibit 20.23% power conversion efficiency with significantly reduced photocurrent hysteresis. Moreover, perovskite photodetectors by magnetic field‐aligned CH3NH3PbI3:Fe3O4 composite thin films exhibit a photoresponsivity of 858 mA W?1, a photodetectivity over 1013 Jones (1 Jones = 1 cm Hz1/2 W?1) and a linear dynamic range over 160 dB at room temperature. All these device performance parameters are significantly better than those by pristine CH3NH3PbI3 thin film. Thus, these studies provide a facile way to boost device performance of perovskite photovoltaics.  相似文献   

9.
Solution‐processable hybrid perovskite solar cells are a new member of next generation photovoltaics. In the present work, a low‐temperature two‐step dipping method is proposed for the fabrication of CH3NH3PbI3‐xClx perovskite films on the indium tin oxide glass/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) substrate. The bandgaps of the CH3NH3PbI3‐xClx perovskite films are tuned in the range between 1.54 and 1.59 eV by adjusting the PbCl2 mole fraction (nCl/(nCl + nI)) in the initial mixed precursor solution from 0.10 to 0.40. The maximum chlorine mole fraction measured by a unique potentiometric titration method in the produced CH3NH3PbI3‐xClx films can be up to 0.220 ± 0.020 (x = 0.660 ± 0.060), which is much higher than that produced by a one‐step spin‐coating method (0.056 ± 0.015, x = 0.17 ± 0.04). The corresponding solar cell with the CH3NH3PbI2.34±0.06Cl0.66±0.06 perovskite film sandwiched between PEDOT:PSS and C60 layers exhibits a power conversion efficiency as high as 14.5%. Meanwhile, the open‐circuit potential (Voc) of the device reaches 1.11 V, which is the highest Voc reported in the perovskite solar cells fabricated on PEDOT:PSS so far.  相似文献   

10.
In this work, alcohol‐vapor solvent annealing treatment on CH3NH3PbI3 thin films is reported, aiming to improve the crystal growth and increase the grain size of the CH3NH3PbI3 crystal, thus boosting the performance of perovskite photovoltaics. By selectively controlling the CH3NH3I precursor, larger‐grain size, higher crystallinity, and pinhole‐free CH3NH3PbI3 thin films are realized, which result in enhanced charge carrier diffusion length, decreased charge carrier recombination, and suppressed dark currents. As a result, over 43% enhanced efficiency along with high reproducibility and eliminated photocurrent hysteresis behavior are observed from perovskite hybrid solar cells (pero‐HSCs) where the CH3NH3PbI3 thin films are treated by methanol vapor as compared with that of pristine pero‐HSCs where the CH3NH3PbI3 thin films are without any alcohol vapor treatment. In addition, the dramatically restrained dark currents and raised photocurrents give rise to over ten times enhanced detectivities for perovskite hybrid photodetectors, reaching over 1013 cm Hz1/2 W?1 (Jones) from 375 to 800 nm. These results demonstrate that the method provides a simple and facile way to boost the device performance of perovskite photovoltaics.  相似文献   

11.
Solvent engineering technique for planar heterojunction perovskite solar cells is an efficient way to achieve uniformly controlled grain morphology for perovskite films. In this report, diethyl ether solvent engineering technique was used for Methyl ammonium lead triiodide (CH3NH3PbI3) perovskite thin films for planar heterojunction solar cells which exhibited a PCE of 9.20%. Morphological improvements and enhanced grain sizes leads to enhanced absorption of CH3NH3PbI3. Moreover solar cells have showed an excellent environmental stability of more than 100 days. This increase in efficiency is due to improved film morphology of perovskite layer after solvent treatment which has been revealed under UV–Vis spectroscopy, SEM images, X-ray diffraction and impedance spectroscopy.  相似文献   

12.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

13.
Hole transporting layer (HTL)-free CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells were fabricated with the configuration of ITO/CH3NH3PbI3/PC61BM/Al. The devices present a remarkable power conversion efficiency (PCE) of 11.7% (12.5% best) under AM 1.5G 100 mW cm−2 illumination. Moreover, the HTL-free perovskite solar cells on flexible PET substrates are first demonstrated, achieving a power conversion efficiency of 9.7%. The element distribution in the HTL-free perovskite solar cell was further investigated. The results indicated that the PbI2 enriched near the PC61BM side for chlorobenzene treatment via the fast deposition crystallization method. Without using HTL on the ITO, the device is stable with comparison to that with poly(3,4-ethylenedioxylenethiophene): poly(styrene sulfonate) (PEDOT:PSS) as HTL. In addition, the fabricating time of the whole procedure from ITO substrate cleaning to device finishing fabrication only cost about 3 h for our mentioned devices, which is much more rapid than other structure devices containing other transporting layer. The high efficient and stable HTL-free CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells with the advantage of saving time and cost provide the potential for commercialization printing electronic devices.  相似文献   

14.
The development of organometal halide perovskite solar cells has grown rapidly and the highest efficiency of the devices has recently surpassed 22%. Because these solar cells contain toxic lead, a sustainable strategy is required to prevent environmental pollution and avoid healthy hazard caused by possible lead outflow. Here, in situ recycling PbI2 from thermal decomposition CH3NH3PbI3 perovskite films for efficient perovskite solar cells was developed. The thermal behavior of CH3NH3PbI3 perovskite and its individual components were examined by thermogravimetric analysis. By optimizing the process of thermal decomposition CH3NH3PbI3 film, the complete conversion from CH3NH3PbI3 to pure PbI2 layer with a mesoporous scaffold was achieved. The mesoporous structure readily promotes the conversion efficiency of perovskite and consequently results in high‐performance device. A perovskite crystal growth mechanism on the mesoporous PbI2 structure was proposed. These results suggest that in situ recycled PbI2 scaffolds can be a new route in manipulating the morphology of the perovskite active layer, providing new possibilities for high performance. Meanwhile, the risk of lead outflow can be released, and the saving‐energy fabrication of efficient solar cells can be realized.  相似文献   

15.
Highly efficient and non-hysteresis organic/perovskite planar heterojunction solar cells was fabricated by low-temperature, solution-processed method with a structure of ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Al. The high-quality perovskite thin film was obtained using a solvent-induced-fast-crystallization deposition involving spin-coating the CH3NH3PbI3 solution followed by top-dropping chlorobenzene with an accurate control to induce the crystallization, which results in highly crystalline, pinhole-free, and smooth perovskite thin film. Furthermore, it was found that the molar ratio of CH3NH3I to PbI2 greatly influence the properties of CH3NH3PbI3 film and the device performance. The equimolar or excess PbI2 was facile to form a flat CH3NH3PbI3 film and produced relatively uniform perovskite crystals. Perovskite solar cells (PSCs) with high-quality CH3NH3PbI3 thin film showed good performance and excellent repeatability. The power conversion efficiency (PCE) up to 13.49% was achieved, which is one of the highest PCEs obtained for low-temperature, solution-processed planar perovskite solar cells based on the structure ITO/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al. More importantly, PSCs fabricated using this method didn’t show obvious hysteresis under different scan direction and speed.  相似文献   

16.
Understanding the relationship between the growth and local emission of hybrid perovskite structures and the performance of the devices based on them demands attention. This study investigates the local structural and emission features of CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3 perovskite films deposited under different yet optimized conditions using X‐ray scattering and cathodoluminescence spectroscopy, respectively. X‐ray scattering shows that a CH3NH3PbI3 film involving spin coating of CH3NH3I instead of dipping is composed of perovskite structures exhibiting a preferred orientation with [202] direction perpendicular to the surface plane. The device based on the CH3NH3PbI3 film composed of oriented crystals yields a relatively higher photovoltage. In the case of CH3NH3PbBr3, while the crystallinity decreases when the HBr solution is used in a single‐step method, the photovoltage enhancement from 1.1 to 1.46 V seems largely stemming from the morphological improvements, i.e., a better connection between the crystallites due to a higher nucleation density. Furthermore, a high photovoltage of 1.47 V obtained from CH(NH2)2PbBr3 devices could be attributed to the formation of perovskite films displaying uniform cathodoluminescence emission. The comparative analysis of the local structural, morphological, and emission characteristics of the different perovskite films supports the higher photovoltage yielded by the relatively better performing devices.  相似文献   

17.
A precise control of the morphology and crystallization of perovskite thin-films is well-correlated to higher perovskite solar cells performances. Ionic liquids (ILs) can retard perovskite crystallization to aid the formation of films with uniform morphology to realize highly efficient perovskite solar cells. Herein, we attempt to control the nanostructural growth of CH3NH3PbI3 thin films by adding ILs to the perovskite spin-coating solution and investigate the effect of IL viscosity on the resulting CH3NH3PbI3 nanoparticle (NP) thin films. NPs with desirable morphology were obtained using ILs with a low viscosity that completely dissolved in the CH3NH3PbI3 solution. In particular, the IL tetrabutylammonium chloride yielded NPs with a diameter of 500 nm and controllable morphology, crystallinity, and absorption behavior, which led to improved photovoltaic performance compared with that of solar cells containing NPs produced using other ILs. Our findings revealed a pathway to obtain uniformly distributed CH3NH3PbI3 NP thin films for use in perovskite solar cells. The developed method is well suited for large-scale production of perovskite thin films on flexible substrates.  相似文献   

18.
Single‐crystalline perovskites are ideal candidates for lasing and other optoelectronic applications. Although significant efforts have been made to grow both bulk single‐crystalline perovskites in liquid solution, their dimensions are still too large to make nanoscale whispering‐gallery‐mode (WGM) resonator based lasers that possess high quality (Q) factor and small volume. Besides, most reported perovskite resonators do not possess atomically smooth surfaces and facets, which limits the Q and thereby increases the lasing threshold. Here, atomically smooth triangular PbI2 templates are fabricated on a mica substrate by the vapor phase deposition method and are converted to atomically smooth perovskites which have regular and unwrinkled facets with average surface roughness less than 2 nm. By using a CH3NH3PbI3 nanoplatelet with a side length of 27 µm and thickness of 80 nm, room temperature WGM lasing with a Q up to 2600 is demonstrated, the highest reported for hybrid organic–inorganic perovskite nanoplatelets. In addition, the volume of the WGM mode is reduced significantly in comparison with the prior reports. The realized high‐quality triangular CH3NH3PbI3 perovskite nanoplatelets with high Q factor and small volume are expected to perform as ideal cavities for long pulse durations lasers and would find potential applications in integrated optoelectronic devices.  相似文献   

19.
Compared with silicon‐based solar cells, organic–inorganic hybrid perovskite solar cells (PSCs) possess a distinct advantage, i.e., its application in the flexible field. However, the efficiency of the flexible device is still lower than that of the rigid one. First, it is found that the dense formamidinium (FA)‐based perovskite film can be obtained with the help of N‐methyl‐2‐pyrrolidone (NMP) via low pressure‐assisted method. In addition, CH3NH3Cl (MACl) as the additive can preferentially form MAPbCl3?xIx perovskite seeds to induce perovskite phase transition and crystal growth. Finally, by using FAI·PbI2·NMP+x%MACl as the precursor, i.e., ligand and additive synergetic process, a FA‐based perovskite film with a large grain size, high crystallinity, and low trap density is obtained on a flexible substrate under ambient conditions due to the synergetic effect, e.g., MACl can enhance the crystallization of the intermediate phase of FAI·PbI2·NMP. As a result, a record efficiency of 19.38% in flexible planar PSCs is achieved, and it can retain about 89% of its initial power conversion efficiency (PCE) after 230 days without encapsulation under ambient conditions. The PCE retains 92% of the initial value after 500 bending cycles with a bending radii of 10 mm. The results show a robust way to fabricate highly efficient flexible PSCs.  相似文献   

20.
The microstructure of solution‐processed organometallic lead halide perovskite thin films prepared by the “gas‐assisted” method is investigated with synchrotron‐based techniques. Using a combination of GIWAXS and NEXAFS spectroscopy the orientational alignment of CH3NH3PbI3 crystallites and CH3NH3+ cations are separately probed. The GIWAXS results reveal a lack of preferential orientation of CH3NH3PbI3 crystallites in 200–250 nm thick films prepared on both planar TiO2 and mesoporous TiO2. Relatively high efficiencies are observed for device based on such films, with 14.3% achieved for planar devices and 12% for mesoporous devices suggesting that highly oriented crystallites are not crucial for good cell performance. Oriented crystallites however are observed in thinner films (≈60 nm) deposited on planar TiO2 (but not on mesoporous TiO2) indicating that the formation of oriented crystallites is sensitive to the kinetics of solvent evaporation and the underlying TiO2 morphology. NEXAFS measurements on all samples found that CH3NH3+ cations exhibit a random molecular orientation with respect to the substrate. The lack of any NEXAFS dichroism for the thin CH3NH3PbI3 layer deposited on planar TiO2 in particular indicates the absence of any preferential orientation of CH3NH3+ cations within the CH3NH3PbI3 unit cell for as‐prepared layers, that is, without any electrical poling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号