首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new molecularly engineered nonfullerene acceptor, 2,2′‐(5,5′‐(9,9‐didecyl‐9H‐fluorene‐2,7‐diyl)bis (benzo[c][1,2,5]thiadiazole‐7,4‐diyl)bis (methanylylidene))bis (3‐hexyl‐1,4‐oxothiazolidine‐5,2‐diylidene))dimalononitrile ( BAF‐4CN ), with fluorene as the core and arms of dicyano‐n‐hexylrhodanine terminated benzothiadiazole is synthesized and used as an electron acceptor in bulk heterojunction organic solar cells. BAF‐4CN shows a stronger and broader absorption with a high molar extinction coefficient of 7.8 × 104m ?1 cm?1 at the peak position (498 nm). In the thin film, the molecule shows a redshift around 17 nm. The photoluminescence experiments confirm the excellent electron accepting nature of BAF‐4CN with a Stern–Volmer coefficient (K sv) of 1.1 × 105m ?1. From the electrochemical studies, the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of BAF‐4CN are estimated to be ?5.71 and ?3.55 eV, respectively, which is in good synchronization with low bandgap polymer donors. Using BAF‐4CN as an electron acceptor in a poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl) 2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5″′‐diyl)] based bulk‐heterojunction solar cell, a maximum power conversion efficiency of 8.4% with short‐circuit current values of 15.52 mA cm?2, a fill factor of 70.7%, and external quantum efficiency of about 84% covering a broad range of wavelength is achieved.  相似文献   

2.
New electroactive and photoactive conjugated copolymers consisting of alternating 2,7‐carbazole and oligothiophene moieties linked by vinylene groups have been developed. Different oligothiophene units have been introduced to study the relationship between the polymer structure and the electronic properties. The resulting copolymers are characterized by UV‐vis spectroscopy, size‐exclusion chromatography, and thermal and electrochemical analyses. Bulk heterojunction photovoltaic cells from different copolymers and a soluble fullerene derivative, [6,6]‐phenyl‐C61 butyric acid methyl ester, have been fabricated, and promising preliminary results are obtained. For instance, non‐optimized devices using poly(N‐(4‐octyloxyphenyl)‐2,7‐carbazolenevinylene‐alt‐3″,4″‐dihexyl‐2,2′;5′,2″;5″,2″′;5″′,2″″‐quinquethiophenevinylene 1″,1″‐dioxide) as an absorbing and hole‐carrier semiconductor exhibit power conversion efficiency up to 0.8 % under air mass (AM) 1.5 illumination. These features make 2,7‐carbazolenevinylene‐based and related polymers attractive candidates for solar‐cell applications.  相似文献   

3.
A synergetic effect of molecular weight (Mn) and fluorine (F) on the performance of all‐polymer solar cells (all‐PSCs) is comprehensively investigated by tuning the Mn of the acceptor polymer poly((N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl)‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) and the F content of donor polymer poly(2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐dyl‐alt‐thiophene‐2,5‐diyl). Both Mn and F variations strongly influence the charge transport properties and morphology of the blend films, which have a significant impact on the photovoltaic performance of all‐PSCs. In particular, the effectiveness of high Mn in increasing power conversion efficiency (PCE) can be greatly improved by the devices based on optimum F content, reaching a PCE of 7.31% from the best all‐PSC combination. These findings enable us to further understand the working principles of all‐PSCs with a view on achieving even higher power conversion efficiency in the future.  相似文献   

4.
Ga-doped ZnO(GZO) is investigated as an electron transport layer in organic solar cells based on a promising donor: acceptor system of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldode-cyl)-2,2′; 5′,2″; -5″,2‴-quaterthio-phen-5,5‴-diyl)] (PffBT4T-2OD):phenyl-C71-butyric acid methyl ester (PC70BM). With the inverted geometry having a configuration of ITO/GZO (40 nm)/PffBT4T-2OD:PC70BM (270 nm)/MoO3 (20 nm)/Al (100 nm), maximum power conversion efficiency (PCE) of 9.74% has been achieved, while it is limited at 8.72% for devices with undoped ZnO. Our study based on the structural, morphological, compositional, and electrical characterizations indicate that suggests enhanced device performance of the GZO-based devices resulted mainly from the improved electrical properties of Ga-ZnO thin films as compared to undoped ZnO.  相似文献   

5.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

6.
Organic solar cells utilizing the small molecule donor 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5] thiadiazole) (p‐DTS(FBTTh2)2 and the polymer acceptor poly{[N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalenedicarboximide‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)}(P(NDI2OD‐T2)) are investigated and a power conversion efficiency of 2.1% is achieved. By systematic study of bulk heterojunction (BHJ) organic photovoltaic (OPV) quantum efficiency, film morphology, charge transport and extraction and exciton diffusion, the loss processes in this blend is revealed compared to the blend of [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and the same donor. An exciton diffussion study using Förster resonant energy transfer (FRET) shows the upper limit of the P(NDI2OD‐T2) exciton diffusion length to be only 1.1 nm. The extremely low exciton diffusion length of P(NDI2OD‐T2), in combination with the overlap in donor and acceptor absorption, is then found to significantly limit device performance. These results suggest that BHJ OPV devices utilizing P(NDI2OD‐T2) as an acceptor material will likely be limited by its low exciton diffusion length compared to devices utilizing functionalized fullerene acceptors, especially when P(NDI2OD‐T2) significantly competes with the donor molecule for photon absorption.  相似文献   

7.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

8.
The unique electro‐optical features of organic photovoltaics (OPVs) have led to their use in applications that focus on indoor energy harvesters. Various adoptable photoactive materials with distinct spectral absorption windows offer enormous potential for their use under various indoor light sources. An in‐depth study on the performance optimization of indoor OPVs is conducted using various photoactive materials with different spectral absorption ranges. Among the materials, the fluorinated phenylene‐alkoxybenzothiadiazole‐based wide bandgap polymer—poly[(5,6‐bis(2‐hexyldecyloxy)benzo[c][1,2,5]thiadiazole‐4,7‐diyl)‐alt‐(5,50‐(2,5‐difluoro‐1,4‐phenylene)bis(thiophen‐2‐yl))] (PDTBTBz‐2Fanti)‐contained photoactive layer—exhibits a superior spectrum matching with indoor lights, particularly a light‐emitting diode (LED), which results in an excellent power absorption ratio. These optical properties contribute to the state‐of‐the‐art performance of the PDTBTBz‐2Fanti:[6,6]‐phenyl‐C71 butyric acid methyl ester (PC71BM)‐based OPV with an unprecedented high power‐conversion efficiency (PCE) of 23.1% under a 1000 lx LED. Finally, its indoor photovoltaic performance is observed to be better than that of an interdigitated‐back‐contact‐based silicon photovoltaic (PCE of 16.3%).  相似文献   

9.
A power conversion efficiency of up to 8.91% is obtained for a solution‐processed polymer tandem solar cells based on a large‐bandgap polymer, poly(4,4‐dioctyldithieno(3,2‐b:2′,3′‐d)silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl) with a polymeric interconnecting layer to electrically connect the front and rear subcells, demonstrating that proper device and interface engineering are can improve the performance of polymer tandem solar cells.  相似文献   

10.
Crystallizable, high‐mobility conjugated polymers have been employed as secondary donor materials in ternary polymer solar cells in order to improve device efficiency by broadening their spectral response range and enhancing charge dissociation and transport. Here, contrasting effects of two crystallizable polymers, namely, PffBT4T‐2OD and PDPP2TBT, in determining the efficiency improvements in PTB7‐Th:PC71BM host blends are demonstrated. A notable power conversion efficiency of 11% can be obtained by introducing 10% PffBT4T‐2OD (relative to PTB7‐Th), while the efficiency of PDPP2TBT‐incorporated ternary devices decreases dramatically despite an enhancement in hole mobility and light absorption. Blend morphology studies suggest that both PffBT4T‐2OD and PDPP2TBT are well dissolved within the host PTB7‐Th phase and facilitate an increased degree of phase separation between polymer and fullerene domains. While negligible charge transfer is determined in binary blends of each polymer mixture, effective energy transfer is identified from PffBT4T‐2OD to PTB7‐Th that contributes to an improvement in ternary blend device efficiency. In contrast, energy transfer from PTB7‐Th to PDPP2TBT worsens the efficiency of the ternary device due to inefficient charge dissociation between PDPP2TBT and PC71BM.  相似文献   

11.
Device performance and photoinduced charge transfer are studied in donor/acceptor blends of the oxidation‐resistant conjugated polymer poly[(4,8‐bis(2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐2,6‐diyl‐alt‐(2,5‐bis(3‐dodecylthiophen‐2‐yl)benzo[1,2‐d;4,5‐d′]bisthiazole)] (PBTHDDT) with the following fullerene acceptors: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM); [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM); and the indene‐C60 bis‐adduct IC60BA). Power conversion efficiency improves from 1.52% in IC60BA‐based solar cells to 3.75% in PC71BM‐based devices. Photoinduced absorption (PIA) of the PBTHDDT:fullerene blends suggests that exciting the donor polymer leads to long‐lived positive polarons on the polymer and negative polarons on the fullerene in all three polymer fullerene blends. Selective excitation of the fullerene in PC71BM or PC61BM blends also generates long‐lived polarons. In contrast, no discernible PIA features are observed when selectively exciting the fullerene in a PBTHDDT/IC60BA blend. A relatively small driving force of ca. 70 meV appears to sustain charge separation via photoinduced hole transfer from photoexcited PC61BM to the polymer. The decreased driving force for photoinduced hole transfer in the IC60BA blend effectively turns off hole transfer from IC60BA excitons to the host polymer, even while electron transfer from the polymer to the IC60BA remains active. Suppressed hole transfer from fullerene excitons is a potentially important consideration for materials design and device engineering of organic solar cells.  相似文献   

12.
We utilize transient techniques to directly compare the operation of polymer/fullerene, polymer/nanocrystal, and polymer/polymer bulk heterojunction solar cells. For all devices, poly(3‐hexylthiophene) (P3HT) is used as the electron donating polymer, in combination with either the fullerene derivative phenyl‐C61‐butyric acid methyl ester (PCBM) in polymer/fullerene cells, CdSe nanoparticles in polymer/nanocrystal cells, or the polyfluorene copolymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2,2‐diyl) (F8TBT) in polymer/polymer cells. Transient photocurrent and photovoltage measurements are used to probe the dynamics of charge‐separated carriers, with vastly different dynamic behavior observed for polymer/fullerene, polymer/polymer, and polymer/nanocrystal devices on the microsecond to millisecond timescale. Furthermore, by employing transient photocurrent analysis with different applied voltages we are also able to probe the dynamics behavior of these cells from short circuit to open circuit. P3HT/F8TBT and P3HT/CdSe devices are characterized by poor charge extraction of the long‐lived carriers attributed to charge trapping. P3HT/PCBM devices, in contrast, show relatively trap‐free operation with the variation in the photocurrent decay kinetics with applied bias at low intensity, consistent with the drift of free charges under a uniform electric field. Under solar conditions at the maximum power point, we see direct evidence of bimolecular recombination in the P3HT/PCBM device competing with charge extraction. Transient photovoltage measurements reveal that, at open circuit, photogenerated charges have similar lifetimes in all device types, and hence, the extraction of these long‐lived charges is a limiting process in polymer/nanocrystal and polymer/polymer devices.  相似文献   

13.
As a characteristic feature of conventional conjugated polymers, it has been generally agreed that conjugated polymers exhibit either high hole transport property (p‐type) or high electron transport property (n‐type). Although ambipolar properties have been demonstrated from specially designed conjugated polymers, only a few examples have exhibited ambipolar transport properties under limited conditions. Furthermore, there is, as yet, no example with ‘equivalent’ hole and electron transport properties. We describe the realization of an equivalent ambipolar organic field‐effect transistor (FET) by using a single‐component visible–near infrared absorbing diketopyrrolopyrrole (DPP)‐benzothiadiazole (BTZ) copolymer, namely poly[3,6‐dithiene‐2‐yl‐2,5‐di(2‐decyltetradecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5’,5’’‐diyl‐alt‐benzo‐2,1, 3‐thiadiazol‐4,7‐diyl] ( PDTDPP‐alt‐BTZ ). PDTDPP‐alt‐BTZ shows not only ideally balanced charge carrier mobilities for both electrons (?e = 0.09 cm2V?1s?1) and holes (?h = 0.1 cm2V?1s?1) but also its inverter constructed with the combination of two identical ambipolar FETs exhibits a gain of ~35 that is much higher than usually obtained values for unipolar logic.  相似文献   

14.
n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.  相似文献   

15.
Charge transport is investigated in high‐mobility n‐channel organic field‐effect transistors (OFETs) based on poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2), Polyera ActivInk? N2200) with variable‐temperature electrical measurements and charge‐modulation spectroscopy. Results indicate an unusually uniform energetic landscape of sites for charge‐carrier transport along the channel of the transistor as the main reason for the observed high‐electron mobility. Consistent with a lateral field‐independent transport at temperatures down to 10 K, the reorganization energy is proposed to play an important role in determining the activation energy for the mobility. Quantum chemical calculations, which show an efficient electronic coupling between adjacent units and a reorganization energy of a few hundred meV, are consistent with these findings.  相似文献   

16.
Silaindacenodithiophene is copolymerized with benzo[c][1,2,5]thiadiazole ( BT ) and 4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole ( DTBT ), respectively their fluorinated counter parts 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( 2FBT ) and 5,6‐difluoro‐4,7‐di(thiophen‐2‐yl) benzo[c][1,2,5]thiadiazole ( 2FDTBT ). The influence of the thienyl spacers and fluorine atoms on molecular packing and active layer morphology is investigated with regard to device performances. bulk heterojunction (BHJ) solar cells based on silaindacenodithiophene donor‐acceptor polymers achieved PCE's of 4.5% and hole mobilities of as high as 0.28 cm2/(V s) are achieved in an organic field‐effect transistor (OFET).  相似文献   

17.
The syntheses of new fluorene‐based π‐conjugated copolymers; namely, poly((5,5″‐(3′,4′‐dihexyl‐2,2′;5′,2″‐terthiophene 1′,1′‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTORT), poly((5,5″″‐(3″,4″‐dihexyl‐2,2′:5′,2′:5″,2‴:5‴,2″″‐quinquethiophene 1″,1″‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTTORTT), and poly((5,5‐E‐α‐(2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTCNVT), are reported. In the solid state, PFTORT and PFTCNVT present red–orange emission (with a maximum at 610 nm) while PFTTORTT shows a red emission with a maximum at 666 nm. In all cases, electrochemical measurements have revealed p‐ and n‐dopable copolymers. All these copolymers have been successfully tested in simple light‐emitting diodes and show promising results for orange‐ and red‐light‐emitting devices.  相似文献   

18.
The effects of using a blocking dielectric layer and metal nanoparticles (NPs) as charge‐trapping sites on the characteristics of organic nano‐floating‐gate memory (NFGM) devices are investigated. High‐performance NFGM devices are fabricated using the n‐type polymer semiconductor, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), and various metal NPs. These NPs are embedded within bilayers of various polymer dielectrics (polystyrene (PS)/poly(4‐vinyl phenol) (PVP) and PS/poly(methyl methacrylate) (PMMA)). The P(NDI2OD‐T2) organic field‐effect transistor (OFET)‐based NFGM devices exhibit high electron mobilities (0.4–0.5 cm2 V?1 s?1) and reliable non‐volatile memory characteristics, which include a wide memory window (≈52 V), a high on/off‐current ratio (Ion/Ioff ≈ 105), and a long extrapolated retention time (>107 s), depending on the choice of the blocking dielectric (PVP or PMMA) and the metal (Au, Ag, Cu, or Al) NPs. The best memory characteristics are achieved in the ones fabricated using PMMA and Au or Ag NPs. The NFGM devices with PMMA and spatially well‐distributed Cu NPs show quasi‐permanent retention characteristics. An inkjet‐printed flexible P(NDI2OD‐T2) 256‐bit transistor memory array (16 × 16 transistors) with Au‐NPs on a polyethylene naphthalate substrate is also fabricated. These memory devices in array exhibit a high Ion/Ioff (≈104 ± 0.85), wide memory window (≈43.5 V ± 8.3 V), and a high degree of reliability.  相似文献   

19.
Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T‐2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T‐2OD:FBR blends. This is assigned to the smaller LUMO‐LUMO offset of the PffBT4T‐2OD:FBR blends relative to PffBT4T‐2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T‐2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.  相似文献   

20.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号