共查询到20条相似文献,搜索用时 0 毫秒
1.
Shanshan Chen Yujin An Gitish K. Dutta Yiho Kim Zhi‐Guo Zhang Yongfang Li Changduk Yang 《Advanced functional materials》2017,27(2)
A synergetic effect of molecular weight (Mn) and fluorine (F) on the performance of all‐polymer solar cells (all‐PSCs) is comprehensively investigated by tuning the Mn of the acceptor polymer poly((N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl)‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) and the F content of donor polymer poly(2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐dyl‐alt‐thiophene‐2,5‐diyl). Both Mn and F variations strongly influence the charge transport properties and morphology of the blend films, which have a significant impact on the photovoltaic performance of all‐PSCs. In particular, the effectiveness of high Mn in increasing power conversion efficiency (PCE) can be greatly improved by the devices based on optimum F content, reaching a PCE of 7.31% from the best all‐PSC combination. These findings enable us to further understand the working principles of all‐PSCs with a view on achieving even higher power conversion efficiency in the future. 相似文献
2.
《Advanced Electronic Materials》2018,4(8)
Extraction of photocreated charge carriers from a prototypical all‐polymer organic solar cell is investigated by combining transient photocurrent and time‐delayed collection field experiments with numerical simulations. It is found that extraction is significantly hampered by charges getting trapped in spatial traps that are tentatively attributed to dead ends in the intermixed polymer network—in photovoltaic devices based on the same donor polymer and a fullerene acceptor this effect is much weaker. The slow‐down in charge extraction leads to enhanced recombination and associated performance losses. These effects are observed in addition to the dispersive behavior that is characteristic of charge motion in energetically disordered media. Upon annealing the effects of spatial traps diminish, rationalizing the doubling in device power conversion efficiency after annealing. 相似文献
3.
Anping Zeng Xiaoling Ma Mingao Pan Yuzhong Chen Ruijie Ma Heng Zhao Jianquan Zhang Ha Kyung Kim Ao Shang Siwei Luo Indunil Chathurangani Angunawela Yuan Chang Zhenyu Qi Huiliang Sun Joshua Yuk Lin Lai Harald Ade Wei Ma Fujun Zhang He Yan 《Advanced functional materials》2021,31(33):2102413
In the field of non-fullerene organic solar cells (OSCs), compared to the rapid development of non-fullerene acceptors, the progress of high-performance donor polymers is relatively slow. The property and performance of donor polymers in OSCs are often sensitive to the molecular weight of the polymers. In this study, a chlorinated donor polymer named D18-Cl is reported, which can achieve high performance with a wide range of polymer molecular weight. The devices based on D18-Cl show a higher open-circuit voltage (VOC) due to the slightly deeper energy levels and an outstanding short-circuit current density (JSC) owing to the appropriate long periods of blend films and less ([6,6]-phenyl-C71-butyric acid methyl ester) (PC71BM) in mixed domains, leading to the higher efficiency of 17.97% than those of the D18-based devices (17.21%). Meanwhile, D18-Cl can achieve high efficiencies (17.30–17.97%) when its number-averaged molecular weight (Mn) is ranged from 45 to 72 kDa. In contrast, the D18-based devices only exhibit relatively high efficiencies in a narrow Mn range of ≈70 kDa. Such property and performance make D18-Cl a promising donor polymer for scale-up and low-cost production. 相似文献
4.
Zelin Li Dalei Yang Xiaoli Zhao Tong Zhang Jidong Zhang Xiaoniu Yang 《Advanced functional materials》2018,28(6)
Recently, the influence of molecular weight (Mn) on the performance of polymer solar cells (PSCs) is widely investigated. However, the dependence of optimal thickness of active layer for PSCs on Mn is not reported yet, which is vital to the solution printing technology. In this work, the effect of Mn on the efficiency and especially optimal thickness of the active layer for PBTIBDTT‐S‐based PSCs is systematically studied. The device efficiency improves significantly as the Mn increases from 12 to 38 kDa, and a remarkable efficiency of 10.1% is achieved, which is among the top efficiencies of wide‐bandgap polymer:fullerene PSCs. Furthermore, the optimal thickness of the active layer is also greatly increased from 62 to 210 nm with increased Mn. Therefore, a device employing a thick (>200 nm) active layer with power conversion efficiency exceeding 10% is achieved by manipulating Mn. This exciting result is attributed to both the improved crystallinity, thus hole mobility, and preferable polymer orientation, thus morphology of active layer. These findings, for the first time, highlight the significant impact of Mn on the optimal thickness of active layer for PSCs and provide a facile way to further improve the performance of PSCs employing a thick active layer. 相似文献
5.
Xiaojun Li He Huang Indunil Angunawela Jiadong Zhou Jiaqi Du Alex Liebman‐Pelaez Chenhui Zhu Zhanjun Zhang Lei Meng Zengqi Xie Harald Ade Yongfang Li 《Advanced functional materials》2020,30(3)
The effects of central alkoxy side chain length of a series of narrow bandgap small molecule acceptors (SMAs) on their physicochemical properties and on the photovoltaic performance of the SMA‐based polymer solar cells (PSCs) are systematically investigated. It is found that the ordered aggregation of these SMAs in films is enhanced gradually with the increase of alkoxy chain length. The single‐crystal structures of these SMAs further reveal that small changes in the side chain length can have a dramatic impact on molecular self‐assembly. The short‐circuit current density and power conversion efficiency values of the corresponding PSCs increase with the increase of the side chain length of the SMAs. The π–π coherence length of the SMAs in the active layers is increased with the increase of the side chain length, which could be the reason for the increase of the Jsc in the PSCs. The results indicate that small changes in side chain length can have a dramatic impact on the molecular self‐assembly, morphology, and photovoltaic performance of the PSCs. The structure–performance relationship established in this study can provide important instructions for the side chain engineering and for the design of efficient SMAs materials. 相似文献
6.
Contrasting Effects of Energy Transfer in Determining Efficiency Improvements in Ternary Polymer Solar Cells
下载免费PDF全文

Wei Li Yu Yan Yanyan Gong Jinlong Cai Feilong Cai Robert S. Gurney Dan Liu Andrew J. Pearson David G. Lidzey Tao Wang 《Advanced functional materials》2018,28(5)
Crystallizable, high‐mobility conjugated polymers have been employed as secondary donor materials in ternary polymer solar cells in order to improve device efficiency by broadening their spectral response range and enhancing charge dissociation and transport. Here, contrasting effects of two crystallizable polymers, namely, PffBT4T‐2OD and PDPP2TBT, in determining the efficiency improvements in PTB7‐Th:PC71BM host blends are demonstrated. A notable power conversion efficiency of 11% can be obtained by introducing 10% PffBT4T‐2OD (relative to PTB7‐Th), while the efficiency of PDPP2TBT‐incorporated ternary devices decreases dramatically despite an enhancement in hole mobility and light absorption. Blend morphology studies suggest that both PffBT4T‐2OD and PDPP2TBT are well dissolved within the host PTB7‐Th phase and facilitate an increased degree of phase separation between polymer and fullerene domains. While negligible charge transfer is determined in binary blends of each polymer mixture, effective energy transfer is identified from PffBT4T‐2OD to PTB7‐Th that contributes to an improvement in ternary blend device efficiency. In contrast, energy transfer from PTB7‐Th to PDPP2TBT worsens the efficiency of the ternary device due to inefficient charge dissociation between PDPP2TBT and PC71BM. 相似文献
7.
Yalong Xu Jianyu Yuan Sijie Zhou Martin Seifrid Lei Ying Bin Li Fei Huang Guillermo C. Bazan Wanli Ma 《Advanced functional materials》2019,29(8)
In this work, the way in which ambient moisture impacts the photovoltaic performance of conventional PCBM and emerging polymer acceptor–based organic solar cells is examined. The device performance of two representative p‐type polymers, PBDB‐T and PTzBI, blended with either PCBM or polymeric acceptor N2200, is systemically investigated. In both cases, all‐polymer photovoltaic devices processed from high‐humidity ambient conditions exhibit significantly enhanced moisture‐tolerance compared to their polymer–PCBM counterparts. The impact of moisture on the blend film morphology and electronic properties of the electron acceptor (N2200 vs PCBM), which results in different recombination kinetics and electron transporting properties, are further compared. The impact of more comprehensive ambient conditions (moisture, oxygen, and thermal stress) on the long‐term stability of the unencapsulated devices is also investigated. All‐polymer solar cells show stable performance for long periods of storage time under ambient conditions. The authors believe that these findings demonstrate that all‐polymer solar cells can achieve high device performance with ambient processing and show excellent long‐term stability against oxygen and moisture, which situate them in an advantageous position for practical large‐scale production of organic solar cells. 相似文献
8.
Xiaofen Wang Lei Lv Lingliang Li Yusheng Chen Kai Zhang Haoran Chen Huanli Dong Jinsong Huang Guozhen Shen Zhou Yang Hui Huang 《Advanced functional materials》2016,26(34):6306-6315
Three acceptor–acceptor (A–A) type conjugated polymers based on isoindigo and naphthalene diimide/perylene diimide are designed and synthesized to study the effects of building blocks and alkyl chains on the polymer properties and performance of all‐polymer photoresponse devices. Variation of the building blocks and alkyl chains can influence the thermal, optical, and electrochemical properties of the polymers, as indicated by thermogravimetric analysis, differential scanning calorimetry, UV–vis, cyclic voltammetry, and density functional theory calculations. Based on the A–A type conjugated polymers, the most efficient all‐polymer photovoltaic cells are achieved with an efficiency of 2.68%, and the first all‐polymer photodetectors are constructed with high responsivity (0.12 A W?1) and detectivity (1.2 × 1012 Jones), comparable to those of the best fullerene based organic photodetectors and inorganic photodetectors. Photoluminescence spectra, charge transport properties, and morphology of blend films are investigated to elucidate the influence of polymeric structures on device performances. This contribution demonstrates a strategy of systematically tuning the polymeric structures to achieve high performance all‐polymer photoresponse devices. 相似文献
9.
Qing Ma Zhenrong Jia Lei Meng Hang Yang Jinyuan Zhang Wenbin Lai Jing Guo Xin Jiang Chaohua Cui Yongfang Li 《Advanced functional materials》2023,33(6):2210733
All-polymer solar cells (all-PSCs) possess distinguished advantages of excellent morphology stability, thermal stability, and mechanical flexibility. Tandem solar cells, by stacking two sub-cells, can absorb more photons in a wider wavelength range and can reduce thermal losses. However, limitation of polymer acceptors with suitable bandgaps hinders the development of tandem all-PSCs. Herein, highly efficient tandem all-PSCs are fabricated by employing two polymerized small molecular acceptors (PSMAs) of wide bandgap PIDT (1.66 eV) in the front cell and narrow bandgap PY-IT (1.4 eV) in the rear cell. The two sub-cells with the polymer donors of PM7 in front cell and PM6 in rear cell show high open circuit voltage (Voc) of 1.10 V for the front cell and 0.94 V for the rear cell. By rational device optimizations, the best power conversion efficiency of 17.87% is achieved for the tandem all-PSCs with high Voc of 2.00 V. 17.87% is one of the highest efficiency for the all-PSCs, and 2.00 V is one of the highest Voc for all the tandem organic solar cells. Moreover, the tandem all-PSCs show excellent thermal and light-soaking stability compared with their small-molecule counterparts. The results provide insight to the potential of bandgap tuning in PSMAs, and indicate that the tandem architecture is an effective strategy to boost performance of the all-PSCs. 相似文献
10.
Kakaraparthi Kranthiraja Seonha Kim Changyeon Lee Kumarasamy Gunasekar Vijaya Gopalan Sree Bhoj Gautam Kenan Gundogdu Sung‐Ho Jin Bumjoon J. Kim 《Advanced functional materials》2017,27(29)
The performance of all‐polymer solar cells (all‐PSCs) is often limited by the poor exciton dissociation process. Here, the design of a series of polymer donors ( P1 – P3 ) with different numbers of fluorine atoms on their backbone is presented and the influence of fluorination on charge generation in all‐PSCs is investigated. Sequential fluorination of the polymer backbones increases the dipole moment difference between the ground and excited states (Δµge) from P1 (18.40 D) to P2 (25.11 D) and to P3 (28.47 D). The large Δµge of P3 leads to efficient exciton dissociation with greatly suppressed charge recombination in P3 ‐based all‐PSCs. Additionally, the fluorination lowers the highest occupied molecular orbital energy level of P3 and P2 , leading to higher open‐circuit voltage (VOC). The power conversion efficiency of the P3 ‐based all‐PSCs (6.42%) outperforms those of the P2 and P1 (5.00% and 2.65%)‐based devices. The reduced charge recombination and the enhanced polymer exciton lifetime in P3 ‐based all‐PSCs are confirmed by the measurements of light‐intensity dependent short‐circuit current density (JSC) and VOC, and time‐resolved photoluminescence. The results provide reciprocal understanding of the charge generation process associated with Δµge in all‐PSCs and suggest an effective strategy for designing π‐conjugated polymers for high performance all‐PSCs. 相似文献
11.
Huiliang Sun Bin Liu Chang Woo Koh Yujie Zhang Jianhua Chen Yang Wang Peng Chen Bao Tu Maoyao Su Hang Wang Yumin Tang Yongqiang Shi Han Young Woo Xugang Guo 《Advanced functional materials》2019,29(42)
The aggregation/crystallinity of classic n‐type terpolymers based on naphthalene diimide and perylene diimide is challenging to tune due to their rigid and extended cores, leading to suboptimal film morphology. A new strategy for developing high‐performance n‐type terpolymers by incorporating imide‐functionalized heteroarenes is reported here to balance crystallinity and miscibility without sacrificing charge carrier mobilities. The introduction of thienopyrroledione (TPD) into the copolymer f‐BTI2‐FT results in a series of terpolymers BTI2‐xTPD having distinct TPD content. The irregular backbone reduces crystallinity, yielding improved miscibility with the polymer donor. More importantly, TPD triggers noncovalent S?O interactions, increasing backbone planarity and in‐chain charge transport. Such interactions also promote face‐on polymer packing. As a result, all‐polymer solar cells (all‐PSCs) based on BTI2‐30TPD achieve an optimal power conversion efficiency (PCE) of 8.28% with a small energy loss (0.53 eV). This efficiency is substantially higher than that of TPD (4.4%) or a BTI2‐based copolymer (6.8%) and is also the highest for additive‐free all‐PSCs based on a terpolymer acceptor. Moreover, the BTI2‐30TPD cell exhibits excellent stability with the PCE retaining 90% of its initial value after 400 h of aging. The results demonstrate that random polymerization using imide‐functionalized heteroarenes is a powerful approach to develop terpolymer acceptors toward efficient and stable all‐polymer solar cell PSCs. 相似文献
12.
Bob C. Schroeder Yu‐Cheng Chiu Xiaodan Gu Yan Zhou Jie Xu Jeffrey Lopez Chien Lu Michael F. Toney Zhenan Bao 《Advanced Electronic Materials》2016,2(7)
Semiconducting polymers, in contrast to inorganic silicon, are solution processable and can potentially be printed cost efficiently on flexible large‐area substrates. However to do so it is of paramount importance to formulate the polymeric semiconductors into inks with specific viscosities. Herein, the synthesis of a new highly soluble isoindigo monomer and its incorporation into low bandgap semiconducting polymers is presented. Non‐conjugated flexible linkers are introduced into the conjugated backbone in order to modulate the materials processability. The viscoelastic properties of the new polymers are studied in detail by means of rheometry and dynamical mechanical analysis. The solution viscosity is directly proportional to the content of non‐conjugated linkers in the polymer backbone. In organic field‐effect transistors maximum hole mobilities of 1.7 cm2 V−1 s−1 are achieved with the new polymers. Due to the enhanced solubility all‐polymer solar cells are fabricated by solution shearing, reaching power conversion efficiency values of 3.7%. 相似文献
13.
Zhiqiang Liang Qifeng Zhang Orawan Wiranwetchayan Junting Xi Zhou Yang Kwangsuk Park Chundong Li Guozhong Cao 《Advanced functional materials》2012,22(10):2194-2201
The influences of morphology and thickness of zinc oxide (ZnO) buffer layers on the performance of inverted polymer solar cells are investigated. ZnO buffer layers with different morphology and thickness varying from several nanometers to ≈55 nm are fabricated by adjusting the concentration of the precursor sol. The ZnO buffer layers with nearly same surface quality but with thickness varying from ≈7 to ≈65 nm are also fabricated by spinning coating for comparison. The photovoltaic performance is found to be strongly dependent on ZnO surface quality and less dependent on the thickness. The use of dense and homogenous ZnO buffer layers enhances the fill factor and short‐circuit current of inverted solar cell without sacrificing the open‐circuit voltage of device due to an improvement in the contact between the ZnO buffer layer and the photoactive layer. Inverted devices with a dense and homogenous ZnO buffer layer derived from 0.1 M sol exhibit an overall conversion efficiency of 3.3% which is a 32% increase compared to devices with a rough ZnO buffer layer made from 1 M sol, which exhibited a power conversion efficiency of 2.5%. The results indicate that the efficiency of inverted polymer solar cells can be significantly influenced by the morphology of the buffer layer. 相似文献
14.
《Advanced functional materials》2018,28(39)
The branching point of the side‐chain of naphthalenediimide (NDI)‐based conjugated polymers is systematically controlled by incorporating four different side‐chains, i.e., 2‐hexyloctyl (P(NDI1‐T)), 3‐hexylnonyl (P(NDI2‐T)), 4‐hexyldecyl (P(NDI3‐T)), and 5‐hexylundecyl (P(NDI4‐T)). When the branching point is located farther away from the conjugated backbones, steric hindrance around the backbone is relaxed and the intermolecular interactions between the polymer chains become stronger, which promotes the formation of crystalline structures in thin film state. In particular, thermally annealed films of P(NDI3‐T) and P(NDI4‐T), which have branching points far away from the backbone, possess more‐developed bimodal structure along both the face‐on and edge‐on orientations. Consequently, the field‐effect electron mobilities of P(NDIm‐T) polymers are monotonically increased from 0.03 cm2 V−1 s−1 in P(NDI1‐T) to 0.22 cm2 V−1 s−1 in P(NDI4‐T), accompanied by reduced activation energy and contact resistance of the thin films. In addition, when the series of P(NDIm‐T) polymers is applied in all‐polymer solar cells (all‐PSCs) as electron acceptor, remarkably high‐power conversion efficiency of 7.1% is achieved along with enhanced current density in P(NDI3‐T)‐based all‐PSCs, which is mainly attributed to red‐shifted light absorption and enhanced electron‐transporting ability. 相似文献
15.
Flexible Solar Cells: Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells (Adv. Funct. Mater. 13/2018)
下载免费PDF全文

Jingwen Zhang Rongming Xue Guiying Xu Weijie Chen Guo‐Qing Bian Changan Wei Yaowen Li Yongfang Li 《Advanced functional materials》2018,28(13)
16.
Jingwen Zhang Rongming Xue Guiying Xu Weijie Chen Guo‐Qing Bian Changan Wei Yaowen Li Yongfang Li 《Advanced functional materials》2018,28(13)
To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells. 相似文献
17.
Shaohua Shi Jianyu Yuan Guanqun Ding Michael Ford Kunyuan Lu Guozheng Shi Jianxia Sun Xufeng Ling Yong Li Wanli Ma 《Advanced functional materials》2016,26(31):5669-5678
By the introduction of different building blocks and side‐chains, a series of donor–acceptor type polymer acceptors containing naphthalene diimide have been successfully prepared. The theoretical and experimental results show that the molecular design effectively tunes the energy levels, solubility, and coplanarity of the acceptor polymers. The intermolecular packing, which has been considered as a key factor in the bulk heterojunction morphology, has been adjusted by changing the coplanarity. As a result of improved morphology and fine‐tuned energy levels, a power conversion efficiency of 6.0% has been demonstrated for the optimized devices, which is among the highest‐efficiencies for reported all‐polymer solar cells. The improved device performance may be attributed to the resemble crystallinity of the donor/acceptor polymers, which can lead to the optimal phase separation morphology balancing both charge transfer and transport. 相似文献
18.
Guangjun Zhang Qingxing Wu Yuwei Duan Wanqiang Liu Sang Young Jeong Han Young Woo Qiming Zhao Hu Zhou 《Advanced functional materials》2024,34(48):2408678
The ternary copolymerization strategy has emerged as a promising strategy for developing high-efficiency donor polymers in polymer solar cells (PSCs). Terpolymers based on the star polymer PM6 have already realized good photovoltaic performance. However, challenges such as the intricate synthesis of fluorine-substituted benzodithiophene (F-BDT) unit of PM6 and entropy increase induced by backbone disorder have hindered the construction of high-performance donor terpolymers. In this work, these challenges are addressed by opting for the cost-effective chlorinated-substituted benzodithiophene unit (Cl-BDT) as an alternative to F-BDT and incorporating the large dipole moment and electron-deficient TPD group as the third component into the high-performance donor polymer of PM7. As expected, this approach effectively suppresses terpolymer backbone disorder while enhancing crystallinity, thereby optimizing morphology and improving charge generation and transport. Remarkably, the PM7-TPD-10-based device with 10% TPD replacement achieves a champion power conversion efficiency (PCE) of 18.26%. After introducing PM7-TPD-10 as the third component into D18:L8-BO blend, a dual mechanism for improving the efficiency to 19.40% is realized. This work demonstrates that the high dipole moiety as the third component to construct terpolymers is an important strategy to suppress the backbone disorder and increase the crystallinity, facilitating the optimization of morphology and device performance. 相似文献
19.
Polymer and hybrid solar cells have the potential to become the leading technology of the 21st century in conversion of sun light to electrical energy because their ease processing from solution producing printable devices in a roll‐to‐roll fashion with high speed and low cost. The performance of such devices critically depends on the nanoscale organization of the photoactive layer, which is composed of at least two functional materials: the electron donor and the electron acceptor forming a so‐called bulk heterojunction; however, control of its volume morphology still is a challenge. In this context, advanced analytical tools are required that are able to provide information on the local volume morphology of the photoactive layer with nanometer resolution. In this report electron tomography is introduced as the technique able to explore the 3D morphology of polymer and hybrid solar cells and the first results achieved are critically discussed. 相似文献
20.
Wei Gao Qiaoshi An Ruijie Ming Dongjun Xie Kailong Wu Zhenghui Luo Yang Zou Fujun Zhang Chuluo Yang 《Advanced functional materials》2017,27(34)
Side group of ITIC‐like small molecular acceptor (SMA) plays a critical role in crystallization property. In this article, two new SMAs with n‐hexylthienyl and n‐hexylselenophenyl as side chain, namely ITCPTC‐Th and ITCPTC‐Se, are designed and synthesized by employing newly developed thiophene‐fused ending group (CPTCN). And thiophene and selenophene side group substituted effects of SMA‐based fullerene‐free polymer solar cells (PSCs) are investigated. A stronger σ‐inductive effect between selenophene side group and electron‐donating backbone endows ITCPTC‐Se with better optical absorption and higher LUMO level, ITCPTC‐Th‐based PSCs deliver a higher power conversion efficiency of 10.61%. Charge transport and collection, recombination loss mechanism, and morphology of blend films are intensively studied. These results confirm that side group substituted effects of SMAs are multiple and thiophene is a superior option to selenophene as aromatic side group of ITIC‐like SMAs. 相似文献