首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous cerium oxide at the rate of 50cc per liter was dispersed into diesel and diesel–biodiesel using mechanical agitator and an ultrasonicator for preparing the test fuels. Cerium oxide nanomaterials present in the aqueous cerium oxide exhibit higher catalytic activity because of their large contact surface area per unit volume and can react with water at high temperature to generate hydrogen and improve fuel combustion. Also, cerium oxide nanomaterials act as oxygen buffers causing simultaneous oxidation of hydrocarbons (HCs) as well as the reduction of oxides of nitrogen. The neat diesel and test fuels were tested in an engine without changing the engine system at 0%, 25%, 50%, 75% and 100% load condition and resulted in a considerable enhancement in the brake thermal efficiency, improved brake-specific fuel consumption and decreased concentration of HC, NOx and smoke in the exhaust emitted from the diesel engine due to incorporation of aqueous cerium oxide in the test fuels.  相似文献   

2.
ABSTRACT

In the recent times, the limitations on the exhaust emissions of the internal combustion engines are becoming increasingly rigorous due to environmental safety. Carbon monoxide, oxides of nitrogen, particulates and hydrocarbon are the prime noxious waste emitted by diesel engines. This experimental study involves the analysis of engine performance and emission characteristics of a single cylinder diesel engine with yttria- and ceria-stabilised zirconia coating on a cylinder liner and piston head. Varied dosing levels were added to diesel in both uncoated and coated engines. The experiment resulted in noticeable changes in the selected thermal barrier coating and dosing of cerium oxide additive nanoparticle in diesel. A surge of 2.1% in the brake thermal efficiency and downturn of 3% brake-specific fuel consumption when compared to standard diesel mode in the uncoated engine was discerned. Emission level of nitrogen oxide, carbon monoxide and hydrocarbon also underwent a considerable decline.  相似文献   

3.
ABSTRACT

The energy crisis created by depletion of fossil fuels and the toxic emissions from the fossil fuel demands for eco-friendly potential alternative sources of energy. Even though unclean, biodiesel is found to be a potential alternative for the fossil fuels. In the present work, the emission characteristics and performance of biodiesel blend with and without ZNO additive was studied. There are four biodiesel blends studied in the first part of the research and found that the B25 combination gives a better result compared to others; therefore, this blend is tested with three proportion of ZNO additive in the second part of the research. The addition of 125?PPM of ZNO to the selected B25 blends gives a better performance, the efficiency improvement is found to be 4.2% and the emission of NOx is by 10.3% under full load condition.  相似文献   

4.
The full load performance characteristics of a diesel engine fuelled with palm kernel biodiesel and its blend with diesel fuel are presented in this paper. The biodiesel was synthesised from Nigerian palm kernel oil through a direct base catalysed transesterification process using sodium hydroxide and methanol as the catalyst and alcohol, respectively. The produced biodiesel was blended with neat diesel fuel at a ratio of 20% biodiesel to 80% diesel by volume. The engine torque, brake power, brake specific fuel consumption and brake mean effective pressure were determined for each of the fuels at 400 rpm intervals between 1200 and 3600 rpm. In other to establish a baseline for comparison, the engine was first run on neat diesel. The test results interestingly revealed that the fuel blend (B20) produced higher torque at low and medium engine speeds than neat diesel fuel and unblended biodiesel (B100). This suggests that it can be a suitable fuel for heavy duty engines that are required to develop high torque at low engine speeds. It was also observed that diesel fuel developed higher torque and brake power than the unblended biodiesel (B100) at all tested speeds and showed the least brake specific fuel consumption possibly because of its higher heating value. In all, the palm kernel biodiesel and its blend (B20) exhibited performance characteristic trends very similar to that of diesel fuel thus confirming them as suitable alternative fuels for compression ignition engines.  相似文献   

5.
ABSTRACT

This paper studies the effect of injection parameters on reduction of nitrogen oxide (NOx) emission in a multicylinder diesel engine using Taguchi orthogonal array. To obtain good performance in experiments, we have employed L9 Taguchi array on mixed level fractional design. The engine is fuelled with corn oil methyl ester biodiesel. From the experiment validation, it is found that the urea concentration and the spray angle reduce the production of NOx in the diesel engine. However, it is found that the mixing length does not support the diminution of NOx emission effectively. Additional, ANOVA outcome also reveals that the urea flow rate, urea concentration and the spray angle plays an imperative role in the reduction of NOx emission. The values of the experiments are in accordance with the Taguchi technique.  相似文献   

6.
The present work predicts the performance parameters, namely brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak pressure, exhaust gas temperature and exhaust emissions of a single cylinder four-stroke diesel engine at different injection timings and engine load using blended mixture of polanga biodiesel by artificial neural network (ANN). The properties of biodiesel produced from polanga were measured based on ASTM standards. Using some of the experimental data for training, an ANN model was developed based on standard back-propagation algorithm for the engine. Multi-layer perception network was used for non-linear mapping between input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the developed ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.99946, 0.99968, 0.99988, 0.99967, 0.99899, 0.99941 and 0.99991 for the BSFC, BTE, peak pressure, exhaust gas temperature, NOx, smoke and unburned hydrocarbon emissions, respectively. The experimental results revealed that the blended fuel provides better engine performance and improved emission characteristics.  相似文献   

7.
Motorisation and fast depletion of fossil fuel reserves and issues like global warming have led the researchers all over to look for substitute fuels. Biodiesel resulting from vegetable oil is being used around the globe to lessen air pollution and reduce the necessity of diesel fuel. The current study covers the various aspects of N20 neem biodiesel with increased fuel injection pressure. The blends of N20 were tested with increased fuel injection pressure to examine the characteristics such as brake thermal efficiency, fuel consumption, emission and combustion parameters. Experimental results indicated that N20 with 240?bar has a closer performance to diesel, reduced exhaust emission and improved combustion parameters.  相似文献   

8.
In this work cerium oxide (CeO2) nanoparticle was added to pongamia methyl ester (PME) to study its impact on emission characteristics in a diesel engine. It was found that CeO2 nanoparticles act as an oxygen shelter owing to its high surface energy content due to its huge surface to volume ratio which expedites the process of combustion. Cerium oxide nanoparticles were mixed with neat PME at a different dose of 50?ppm and 100?ppm on a mass basis. CeO2 nanoparticles are mixed to biodiesel by means of ultrasonicator and magnetic agitator to make sure homogenous. A diesel engine was used for the experimental analysis and fuelled with neat PME, diesel, PME dozed with CeO2 nanoparticles at 50?ppm (PMEA50) and 100?ppm (PMEA100). Experimental results revealed that nanoparticle had an affirmative effect on emissions of PME as CeO2 nanoparticles acted as a catalyst of oxidation. Amid the fuels containing CeO2 nanoparticles, PMEA100 showed an improvement in various emissions as compared to conventional fuels. CeO2 nanoparticles were to be the superior oxidising catalyst as it could effectively reduce CO and HC emissions. NOx emission reduced appreciably owing to the catalytic activity of CeO2 nanoparticles.  相似文献   

9.
Energy utilisation from renewable sources plays a vital role in meeting the demands of a clean environment. Commercialisation of biodiesel is comparatively less than that of other alternative sources due to its suitability and yield. This paper is focused on performance and emission characteristics of neem oil biodiesel and cotton seed oil biodiesel blended with cerium oxide as an additive. The blending proportion was B10, B20, B30, B40 and 100% diesel. The testing was performed in a single-cylinder diesel engine coupled with an exhaust gas analyser. The performance characteristics were obtained in between the brake power with specific fuel consumption and emission characteristics such as carbon monoxide, carbon dioxide and other gases. It was observed that the combination of B20 proportion with CeO2 blend produces effect results with other blends in specific fuel consumption and reduced emission behaviour.  相似文献   

10.
ABSTRACT

Biodiesel as an alternative source of petroleum fuel could reduce the dependence on petroleum products and control pollution problems. These biofuels are derived from various sources and if directly used in the engine it will not completely burn and will cause an increase in the emission level. In this experiment, 20% of rubber seed oil (B20) blended with pure diesel fuel along with aluminium oxide (Al2O3) was used in the proportions of 10?, 20 and 30?ppm. The obtained experimental results showed that the brake thermal efficiency was increased and the engine emission was reduced. And the brake-specific fuel consumption was reduced, but the NOx level increased at the proportion level at 10?ppm of nano additives. This experiment has been carried out in a single cylinder water-cooled engine connected to an electrical dynamometer without engine modification and the injection pressure and timings were maintained at the standard level designed for the engine. The dynamic energy of aluminium oxide blend with the biodiesel improved the combustion characteristics in the engine, and caused a reduction in carbon deposits by 44.8% in the cylinder wall.  相似文献   

11.
ABSTRACT

Injection timing (IT) is a vital factor among different injection parameters which governs the emissions and performance factors of the engine. This work portrays the effect of IT on cerium oxide nanoparticle doped Waste Cooking Palm Oil biodiesel and diesel blends. The doping is made at 30, 60 and 90?ppm. The modified fuels are introduced in reducing IT of 19°, 21° and 23°bTDC. 1500?rpm engine is made use in this study. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at IT?=?23°bTDC. Furthermore, performance (BSFC, BTE) is improved for fuel blends at IT?=?23°bTDC.  相似文献   

12.
This paper aims to study the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca oil methyl ester, palm oil methyl ester, sesame methyl ester oil, rapeseed methyl ester oil, soybean oil methyl ester and diesel fuel. In this present work, only 20% of each biodiesel blends was tested in diesel engine; stated that the possible use of biodiesel of up to 20% in a diesel engine without modification in literature. A single-cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine was used to evaluate their performance at constant speed and at measured load conditions. The performance and combustion tests are conducted using each of the above test fuels, at a constant speed of 5000?rpm. Thus, the varying physical and chemical properties of test fuels against pure diesel are optimised for better engine performance.

Abbreviations: BP: brake power; BSFC: brake-specific fuel consumption; BTE: brake thermal efficiency; CO: carbon monoxide; CP: cylinder pressure; DP: diesel pressure; EGT: exhaust gas temperature; HC: hydrocarbon; HRR: heat release rate; NO x : nitric oxides; PM: particulate matter; TDC: top dead centre; VCR: variable compression ratio  相似文献   


13.
In the present study, biodiesel production from the crude cotton-seed oil (CSO) and its feasibility to be used as fuel in compression ignition engine was analysed. Single-stage transesterification at molar ratio of 8:1 on crude CSO yielded 94% of cottonseed biodiesel (CBD). Gas chromatogram/mass spectrometry analysis revealed the presence of 19.5% unsaturated and 80.5% saturated esters in cotton seed biodiesel. Taguchi approach identified the stable fuel blend with oxygenate concentration. Increased oxygen concentration up to 20% were also analysed to understand the variation. Higher peak in-cylinder pressure was observed in D80CBD20 fuel blend. Diesel–biodiesel blend with oxygenate significantly affected the ignition delay and also resulted in varied exhaust gas temperature. D80CBD20nB10 showed an increase in brake thermal efficiency, whereas D80CBD20 exhibited higher brake specific energy consumption at full load. Carbon monoxide, hydrocarbon and smoke emission was found to be high in diesel with higher oxides of nitrogen in D80CBD20nB10. This experimental investigation finally revealed that, D80CBD20nB10 improved the combustion and performance characteristics with minimal emissions.

Abbreviations ASTM: American Society for Testing and Materials; BP: brake power; BSEC: brake specific energy consumption; BTE: brake thermal efficiency; CBD: cottonseed biodiesel; CI: compression ignition; CO: carbon monoxide; CO2: carbon dioxide; CSO: cottonseed oil; DEE: diethyl ether; DOE: design of experiments; EGT: exhaust gas temperature; FTIR: Fourier transform infrared spectrometry; GC/MS: gas chromatogram/mass spectrometry; HC: hydrocarbon; HRR: heat release rate; HSDI: high speed direct injection; IDI: indirect injection; KOH: potassium hydroxide; MFB: mass fraction burned; NaOH: sodium hydroxide; NMR: nuclear magnetic resonance; N2O: nitrous oxide; NO: nitric oxide; NO2: nitrogen dioxide; NO x : oxides of nitrogen; ROHR: rate of heat release; ROPR: rate of pressure rise; SOC: start of combustion; aTDC: after top dead centre; bTDC: before top dead centre  相似文献   


14.
ABSTRACT

Sustainable development of natural resources in this technological world goes hand in hand with the issues like cleaner environment, plantation of oil providing trees, etc. The overall objective of the national mission is to increase the creation of national infrastructure for production of biodiesel through cultivation of Jatropha plant and processing of its oil. Therefore, the objective of this paper is to provide a clean economical solution to this problem. The use of biodiesel leads to reduction in NOx, HC, CO2 and CO, and increase in fuel consumption on diesel engine. The present diesel engine. The Nano particles were dispersed in the biodiesel. If the additives added in the biodiesel at appropriate proportion, it will helpful to increase the engine combustion and performance characteristics. Nano-additives reduce the fuel consumption and improve the thermal efficiency during combustion additives release the energy to the fuel. The current Investigation is to study the effect of Nano-fuel additives cerium oxide (CeO2) the performance and emission characteristics of Mentha longifolia biodiesel in a single cylinder, four stroke.  相似文献   

15.
Diminishing resources, alarming pollution levels and escalating price associated with the application of diesel in compression ignition engine have forced scientific community throughout the world to conduct several experiments for the evaluation of biodiesel (BD) as a substitute for diesel. Due to difference in the physical and chemical properties of BD and diesel, the engine parameters such as compression ratio (CR), injection pressure (IP) and injection timing (IT) may not be optimum for BD, especially for higher blends. The present study is carried out with the aim to investigate the combined effect of CR, IP and IT on the performance and emission of a diesel engine widely used in agriculture sector in India, fuelled with B40 (40% BD and 60% diesel on a volume basis). Furthermore, this paper also aims to find the optimum engine parameters. A total of 27 sets of experiments were conducted for different combination of engine parameters and 162 sets of performance and emission data were recorded with varying load conditions. Adjustment of operating parameters was helpful to overcome the shortcoming of higher blend of BD (B40). The results demonstrated that higher CR (18:1) and IP (240 bar) along with advance IT (26° bTDC) is the best combination for a constant speed engine with brake power of 3.5 kW.  相似文献   

16.
The present work aims to optimise the levels of such parameters as compression ratio (CR), injection pressure (IP) and palm oil biodiesel blend % of a single cylinder direct injection compression ignition engine on carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) emissions. Taguchi and Analysis of Variance techniques were used to find the optimum levels of the parameters and contribution of the parameters on the emission, respectively. Mathematical models were developed using the multiple linear regression technique. Confirmation tests were performed for predicting the gas emissions to check the adequacy of the proposed model. The research outcome infers that the CR was the most dominant factor influencing CO and HC followed by IP and biodiesel blend %. It was observed that the CO and HC emissions decreased with the increase in the CR and IP, while the exhaust NOx emission increased with the increase in the CR and IP.  相似文献   

17.
ABSTRACT

It has been determined that world oil production is likely to level off very shortly and that alternative fuels will have to meet the demands of an increasing energy crisis. The crude oil price is continuing to increase; at the same time the need of energy is also increasing rapidly. So there is an urgent need to switch to some other fuels which could replace petrol and diesel in order to produce energy. An eco-friendly alternative is required to fulfil the growing demand. This project highlights our work on alternate fuels and the importance of choosing radish seed as one such alternative. The aim of this study is the experimental investigation of performance and emissions on a single-cylinder direct-injection diesel engine with a coating. Diesel, B25, B50, B75 and B100 are used as fuels. The engine cylinder head, valves and piston crown are coated with 100 micron of nickel-chrome-aluminium bond coat and 450 micron of partially stabilised zirconia by the atmospheric plasma spray method [Ravikumar and Senthilkumar (2013). “Reduction of NOx Emission on NiCrAl-Titanium Oxide Coated Direct Injection Diesel Engine Fuelled with Radish (Raphanus sativus) Biodiesel.” Journal of Renewable and Sustainable Energy 5 (6): 063121]. Further, by using radish biodiesel and its blends, the emission and performance characteristics are checked and a suitable blend is selected.  相似文献   

18.
Biodiesel has become one of the potential alternative sources to replace diesel. Some of the limitations of biodiesel include high NO x , poor atomization, poor oxidation stability, cold-flow problems, long-term storage problems, etc. Various strategies were discussed to overcome the limitations of biodiesels. Recent research is on effects of fuel additives or fuel composition modification to reformulate the fuel properties. This article is aimed at presenting the experimental investigation of the effects of isobutanol additive on the engine performance and emission characteristics of biodiesel blends derived from waste vegetable oils. The experimental investigation was conducted on a direct injection four-stroke diesel engine with different blends, B10, B20, B30, B10 (10% ISB), B20 (10% ISB), B30 (10% ISB), B10 (20% ISB), B20 (20% ISB) and B30 (20% ISB), and engine performance and emission characteristics are evaluated and discussed.  相似文献   

19.
Antibiotic pollution via wastewaters has led to many environmental problems. In this work, to remove ciprofloxacin which is an antibiotic from water, foil photocatalyst of zinc oxide nanowires doped with copper and cerium oxides was applied under UV light irradiation. An empirical model was developed to determine the photocatalyst activity using response surface methodology. The independent variables were the concentrations of precursors, copper and cerium nitrates in the coating solution. The F‐value and p‐value of the model showed the accuracy of the model. The statistical analysis indicated that copper oxide had larger effect on the response than cerium oxide. The optimized catalyst was determined and characterized using ICP, XRD, SEM and MIP techniques. The results of this work which are comparable to those of the previous studies have the advantage of easy separation of the photocatalyst from water without using a centrifuge.  相似文献   

20.
An experimental investigation is carried out to evaluate the effects of biodiesel–ethanol (BE) blends, biodiesel–dimethyl carbonate (BC) blends and biodiesel–diglyme (BG) blends on the combustion, performance and emission characteristics of a diesel engine operated at different loads and constant engine speed. Compared with biodiesel, for a specific engine load, the BE and BC blends have lower peak cylinder pressure at full load, while the BG blends show a slight variation in the peak cylinder pressure. In comparison with biodiesel, the BE, BC and BG blends have slightly higher brake thermal efficiency. Drastic reduction in smoke is observed with BE, BC and BG blends at higher engine loads. The BSNOx emissions are found slightly lower for BE, BC and BG blends almost at all loads. The BE and BC blends have a slight variation in the BSCO and BSHC emissions, while the BG blends have lower BSCO and BSHC emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号