首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
A concept of interlayer‐sensitized photoluminescence (PL) of quasi‐2D hybrid perovskite (PVK) with a π‐conjugated optically interacting organic cation layer is introduced and demonstrated. A rod‐shaped aggregation‐induced enhanced emission (AIEE) organic cation (BPCSA+), well fitted into the lattice size of 2D PVK layers, is designed and synthesized to prolong the exciton lifetime in a condensed layer assembly in the PVK. The BPCSA+ promotes the PL of this hybrid PVK up to 10‐folds from that of a non‐π‐conjugated organic cation (OA) 2D PVK. Notably, different from PL of OA 2D PVK, the increased PL intensity of BPCSA 2D PVKs with an increase of the BPCSA ratio in the PVK indicates a critical photon‐harvesting contribution of BPCSA. The films of BPCSA 2D PVKs are incredibly stable in ambient environments for more than 4 months and even upon direct contact with water. Additionally, due to the strong two‐photon absorption property of BPCSA, the BPCSA 2D PVK displays superior emission properties upon two‐photon excitation with a short wavelength IR laser. Thus, the AIEE sensitization system for quasi‐2D PVK hybrid system can make a drastic improvement in performance as well as in the stability of the PVK emitter and PVK based nonlinear optical devices.  相似文献   

2.
Hybrid organic–inorganic perovskites have recently emerged as potential disruptive photovoltaic technology. However, the toxicity of lead used in state‐of‐the‐art hybrid perovskites solar cell prevents large‐scale commercialization, which calls for lead‐free alternatives. Sn‐based perovskites have been considered as alternatives but they are limited by rapid oxidation and decomposition in ambient air. Here, an Sn‐based two‐dimensional hybrid organic–inorganic perovskites [A2B(n‐1)SnnI(3n+1)] (n = 1 and 2) are reported with improved air stability, using bulky stilbene derivatives as the organic cations (2‐(4‐(3‐fluoro)stilbenyl)ethanammonium iodide (FSAI)). The moisture stability of the [(FSA)2SnI4] perovskites is attributed to the hydrophobic properties of fluorine‐functionalized organic chains (FSA), as well as the strong cohesive bonding in the organic chains provided by H bonds, CH···X type H bonds, weak interlayer F···F interaction, and weak face‐to‐face type π‐π interactions. The photodetector device fabricated on exfoliated single crystal flake of [(FSA)2SnI4] exhibits fast and stable photoconductor response.  相似文献   

3.
We present the results of a study of frequency upconversion of femtosecond optical pulses in a step‐index polymer optical fiber that uses a stilbenoid compound as an active dopant. Intense blue emission is observed in the doped poly(methyl methacrylate) (PMMA) fiber when it is longitudinally pumped at 800 nm by 175 fs optical pulses. By means of the intensity‐dependent transmission method, the two‐photon absorption cross‐section is deduced. Our study illustrates that the combination of a well‐designed organic chromophore incorporated into a fiber geometry is appealing for the development of an upconversion blue polymer laser.  相似文献   

4.
Quasi‐2D (Q2D) lead halide perovskites have emerged as promising materials for light‐emitting diodes (LEDs) due to their tunable emission, slowed‐down carrier diffusion, and improved stability. However, they are primarily fabricated through solution methods, which hinders its large‐scale manufacture and practical applications. Physical‐vapor‐deposition (PVD) methods have well demonstrated the capability for reproducible, scalable, and layer‐by‐layer fabrication of high quality organic/inorganic thin films. Herein, for the first time, the full‐evaporation fabrication of organic–inorganic hybrid ((BA)2Csn?1PbnBr3n+1) Q2D–3D PeLEDs is demonstrated. The morphology and crystal phase of the perovskite are controlled from 3D to 2D by modulating material composition, annealing temperature, and film thicknesses. The confinement of carriers in 3D layers and the energy funnel effect are discovered and discussed. Importantly, a record high external quantum efficiency (EQE) of 5.3% based on evaporation method is achieved. Moreover, a centimeter‐scale PeLED (1.5 cm × 2 cm) is obtained. Furthermore, the T50 lifetime of the device with an initial brightness of 100 cd m?2 is found to be 90 min with a thin layer PMMA passivation, which is among the longest for all PVD processed PeLEDs. Overall, this work casts a solid stepping stone towards the fabrication of high‐performance PeLEDs on a large‐scale.  相似文献   

5.
Organic/inorganic hybrid templates, i.e., aluminium oxide (Al2O3) nanoparticles grafted with poly(oxyethylene) methacrylate, Al2O3‐POEM, are synthesized via surface‐initiated atom transfer radical polymerization (ATRP), as confirmed by Fourier transform‐infrared spectroscopy (FT‐IR) and thermogravimetric analysis (TGA). Upon combining the Al2O3‐POEM with titanium(IV) isopropoxide (TTIP), hydrophilic TTIP is selectively confined in the hydrophilic POEM chains through hydrogen bonding interactions. Following the calcination at 450 °C and the selective etching of Al2O3 with NaOH, the OM‐TiO2 films with high surface areas, good interconnectivity, and anatase phase are obtained. The solid‐state dye‐sensitized solar cells (ssDSSCs) fabricated with OM‐TiO2 photoelectrodes and a polymerized ionic liquid (PIL) show a high energy conversion efficiency of 7.3% at 100 mW cm?2, which is one of the highest values for ssDSSCs. The high cell performance is due to the well‐organized structure, resulting in improved dye loading, excellent pore filling of electrolyte, enhanced light harvesting, and reduced charge recombination.  相似文献   

6.
Flexible freestanding electrodes are highly desired to realize wearable/flexible batteries as required for the design and production of flexible electronic devices. Here, the excellent electrochemical performance and inherent flexibility of atomically thin 2D MoS2 along with the self‐assembly properties of liquid crystalline graphene oxide (LCGO) dispersion are exploited to fabricate a porous anode for high‐performance lithium ion batteries. Flexible, free‐standing MoS2–reduced graphene oxide (MG) film with a 3D porous structure is fabricated via a facile spontaneous self‐assembly process and subsequent freeze‐drying. This is the first report of a one‐pot self‐assembly, gelation, and subsequent reduction of MoS2/LCGO composite to form a flexible, high performance electrode for charge storage. The gelation process occurs directly in the mixed dispersion of MoS2 and LCGO nanosheets at a low temperature (70 °C) and normal atmosphere (1 atm). The MG film with 75 wt% of MoS2 exhibits a high reversible capacity of 800 mAh g?1 at a current density of 100 mA g?1. It also demonstrates excellent rate capability, and excellent cycling stability with no capacity drop over 500 charge/discharge cycles at a current density of 400 mA g?1.  相似文献   

7.
Here, a facial and scalable method for efficient exfoliation of bulk transition metal dichalcogenides (TMD) and graphite in aqueous solution with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare single‐ and few‐layer nanosheets is demonstrated. Importantly, these TMD nanosheets retain the single crystalline characteristic, which is essential for application in organic solar cells (OSCs). The hybrid PEDOT:PSS/WS2 ink prepared by a simple centrifugation is directly integrated as a hole extraction layer for high‐performance OSCs. Compared with PEDOT:PSS, the PEDOT:PSS/WS2‐based devices provide a remarkable power conversion efficiency due to the “island” morphology and benzoid–quinoid transition. This study not only demonstrates a novel method for preparing single‐ and few‐layer TMD and graphene nanosheets but also paves a way for their applications without further complicated processing.  相似文献   

8.
9.
Van der Waals (vdW) materials are among the most promising candidates for photonic integrated circuits because they support a full set of polaritons that can manipulate light at deep subdiffraction nanoscale. It is possible to directly probe the propagating polaritons in vdW materials in real space via scattering‐type scanning near‐field optical microscopy, such that the wave vector and lifetime of the polaritons can be extracted from as‐measured interference fringes by Fourier analysis. However, this method is unsuitable for clutter interference patterns in samples exhibiting inadequate fringes due to small size (less than 10 µm) or complex edges that are often encountered in nanophotonic devices and new material characterization. Here, a multibeam interference model is developed to analyze complex images by disentangling them into periodic patterns and residue. By employing phase stationary approximation, polariton wave vector can be derived from offset ratio of the center point, and the ratio of polariton reflection and scattering rates at the edge is obtained from the ratio of the periodic and aperiodic patterns. This method can be widely used in the optical characterization of new vdW materials that are difficult to synthesize into large crystals, as well as nanophotonic integrated devices with unique boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号