首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A key issue for perovskite solar cells is the stability of perovskite materials due to moisture effects under ambient conditions, although their efficiency is improved constantly. Herein, an improved CH3NH3PbI3?xClx perovskite quality is demonstrated with good crystallization and stability by using water as an additive during crystal perovskite growth. Incorporating suitable water additives in N,N‐dimethylformamide (DMF) leads to controllable growth of perovskites due to the lower boiling point and the higher vapor pressure of water compared with DMF. In addition, CH3NH3PbI3?xClx · nH2O hydrated perovskites, which can be resistant to the corrosion by water molecules to some extent, are assumed to be generated during the annealing process. Accordingly, water additive based perovskite solar cells present a high power conversion efficiency of 16.06% and improved cell stability under ambient conditions compared with the references. The findings in this work provide a route to control the growth of crystal perovskites and a clue to improve the stability of organic–inorganic halide perovskites.  相似文献   

4.
5.
6.
Reversible photo‐induced performance deterioration is observed in mesoporous TiO2‐containing devices in an inert environment. This phenomenon is correlated with the activation of deep trap sites due to astoichiometry of the metal oxide. Interestingly, in air, these defects can be passivated by oxygen adsorption. These results show that the doping of TiO2 with aluminium has a striking impact upon the density of sub‐gap states and enhances the conductivity by orders of magnitude. Dye‐sensitized and perovskite solar cells employing Al‐doped TiO2 have increased device efficiencies and significantly enhanced operational device stability in inert atmospheres. This performance and stability enhancement is attributed to the substitutional incorporation of Al in the anatase lattice, “permanently” passivating electronic trap sites in the bulk and at the surface of the TiO2.  相似文献   

7.
有机/无机杂化钙钛矿太阳电池因具有高光吸收系数、高转换效率以及低制备成本等优点引起了科学界的广泛关注.综述了近年来有机/无机杂化钙钛矿吸收层几种制备工艺的研究进展,重点分析了目前应用较为广泛且制备工艺相对简单的一步溶液法和两步连续沉积法的工艺条件对钙钛矿薄膜质量及太阳电池光伏性能的影响,并详细介绍了几种制备工艺存在的主要问题及其调控的研究现状.此外,对后续工艺中的有机空穴传输材料及其溶剂、添加剂对钙钛矿太阳电池稳定性的影响及其调控的研究现状进行了简要阐述.为更好地提高钙钛矿太阳电池的效率和长期稳定性,制备工艺的优化和创新是未来钙钛矿太阳电池发展的趋势.  相似文献   

8.
To develop high‐capacitance flexible solid‐state supercapacitors and explore its application in self‐powered electronics is one of ongoing research topics. In this study, self‐stacked solvated graphene (SSG) films are reported that have been prepared by a facile vacuum filtration method as the free‐standing electrode for flexible solid‐state supercapacitors. The highly hydrated SSG films have low mass loading, high flexibility, and high electrical conductivity. The flexible solid‐state supercapacitors based on SSG films exhibit excellent capacitive characteristics with a high gravimetric specific capacitance of 245 F g?1 and good cycling stability of 10 000 cycles. Furthermore, the flexible solid‐state supercapacitors are integrated with high performance perovskite hybrid solar cells (pero‐HSCs) to build self‐powered electronics. It is found that the solid‐state supercapacitors can be charged by pero‐HSCs and discharged from 0.75 V. These results demonstrate that the self‐powered electronics by integration of the flexible solid‐state supercapacitors with pero‐HSCs have great potential applications in storage of solar energy and in flexible electronics, such as portable and wearable personal devices.  相似文献   

9.
Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to‐date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3‐xClx solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin‐film solution processed perovskite solar cells with no mesoporous layer.  相似文献   

10.
11.
Photovoltaics based on organic?inorganic perovskites offer new promise to address the contemporary energy and environmental issues. These solar cells have so far largely relied on small‐molecule hole transport materials such as spiro‐OMeTAD, which commonly suffer from high cost and low mobility. In principle, polyfluorene copolymers can be an ideal alternative to spiro‐OMeTAD, given their low price, high hole mobility and good processability, but this potential has not been explored. Herein, polyfluorene derived polymers‐TFB and PFB, which contain fluorine and arylamine groups, are demonstrated and can indeed rival or even outperform spiro‐OMeTAD as efficient hole‐conducting materials for perovskite solar cells. In particular, under the one‐step perovskite deposition condition, TFB achieves a 10.92% power conversion efficiency that is considerably higher than that with spiro‐OMeTAD (9.78%), while using the two‐step perovskite deposition method, about 13% efficient solar cells with TFB (12.80%) and spiro‐OMeTAD (13.58%) are delivered. Photo­luminescence reveals the efficient hole extraction and diffusion at the interface between CH3NH3PbI3 and the hole conducting polymer. Impedance spectroscopy uncovers the higher electrical conductivity and lower series resistance than spiro‐OMeTAD, accounting for the significantly higher fill factor, photocurrent and open‐circuit voltage of the TFB‐derived cells than with spiro‐MeOTAD.  相似文献   

12.
13.
A series of new branched hole transporting materials (HTMs) containing two diphenylamine‐substituted carbazole fragments linked by a nonconjugated methylenebenzene unit is synthesized and tested in perovskite solar cells. Synthesis of the investigated materials is performed by a simple two‐step synthetic procedure providing a target product in high yield. The isolated materials demonstrate good thermal stability and majority of the investigated compounds exist in an amorphous state, which is advantageous as there is no risk of crystallization directly in the film. The highest charge drift mobility of µ0 = 4 × 10?4 cm2 V?1 s?1, measured at weak electric fields, is by ca. one order of magnitude higher than that of Spiro‐OMeTAD under identical conditions. From the perovskite solar cell testing results, it can be seen that performance of two new HTMs ( V885 and V911 ) is on a par with Spiro‐OMeTAD. Due to the ease of synthesis, good thermal, optical and photophysical properties, this type of molecules hold great promise for practical application in commercial perovskite solar cells.  相似文献   

14.
The microstructure of solution‐processed organometallic lead halide perovskite thin films prepared by the “gas‐assisted” method is investigated with synchrotron‐based techniques. Using a combination of GIWAXS and NEXAFS spectroscopy the orientational alignment of CH3NH3PbI3 crystallites and CH3NH3+ cations are separately probed. The GIWAXS results reveal a lack of preferential orientation of CH3NH3PbI3 crystallites in 200–250 nm thick films prepared on both planar TiO2 and mesoporous TiO2. Relatively high efficiencies are observed for device based on such films, with 14.3% achieved for planar devices and 12% for mesoporous devices suggesting that highly oriented crystallites are not crucial for good cell performance. Oriented crystallites however are observed in thinner films (≈60 nm) deposited on planar TiO2 (but not on mesoporous TiO2) indicating that the formation of oriented crystallites is sensitive to the kinetics of solvent evaporation and the underlying TiO2 morphology. NEXAFS measurements on all samples found that CH3NH3+ cations exhibit a random molecular orientation with respect to the substrate. The lack of any NEXAFS dichroism for the thin CH3NH3PbI3 layer deposited on planar TiO2 in particular indicates the absence of any preferential orientation of CH3NH3+ cations within the CH3NH3PbI3 unit cell for as‐prepared layers, that is, without any electrical poling.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号