首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioinspired magnetically powered microswimmer is designed and experimentally demonstrated by mimicking the morphology of annelid worms. The structural parameters of the microswimmer, such as the surface wrinkling, can be controlled by applying prestrain on substrate for the precise fabrication and consistent performance of the microswimmers. The resulting annelid‐worm‐like microswimmers display efficient propulsion under an oscillating magnetic field, reaching a peak speed of ≈100 µm s?1. The speed and directionality of the microswimmer can be readily controlled by changing the parameters of the field inputs. Additionally, it is demonstrated that the microswimmers are able to transport microparticles toward a predefined destination, although the translation velocity is inevitably reduced due to the additional hydrodynamic resistance of the microparticles. These annelid‐worm‐like microswimmers have excellent mobility, good maneuverability, and strong transport capacity, and they hold considerable promise for diverse biomedical, chemical sensing, and environmental applications.  相似文献   

2.
Hybrid composites of layered brittle‐ductile constituents assembled in a brick‐and‐mortar architecture are promising for applications requiring high strength and toughness. Mostly, polymer mortars have been considered as the ductile layer in brick‐and‐mortar composites. However, low stiffness of polymers does not efficiently transfer the shear between hard ceramic bricks. Theoretical models point to metals as a more efficient mortar layer. However, infiltration of metals into ceramic scaffold is non‐trivial, given the low wetting between metals and ceramics. The authors report on an alternative approach to fabricate brick‐and‐mortar ceramic‐metal composites by using electroless plating of nickel (Ni) on alumina micro‐platelets, in which Ni‐coated micro‐platelets are subsequently aligned by a magnetic field, taking advantage of ferromagnetic properties of Ni. The assembled Ni‐coated ceramic scaffold is then sintered using spark plasma sintering (SPS) to locally create Ni mortar layers between ceramic platelets, as well as to sinter the ceramic micro‐platelets. The authors report on materials and mechanical properties of the fabricated composite. The results show that this approach is promising toward development of bioinspired ceramic‐metal composites.
  相似文献   

3.
Conducting polymer nanostructures have recently received special attention in nanoscience and nanotechnology because of their highly π‐conjugated polymeric chains and metal‐like conductivity, such that they can be regarded not only as excellent molecular wires, but also as basic units for the formation of nanodevices. Although various approaches, such as hard‐template methods, soft‐template methods, electrospinning technology, and so on are widely employed to synthesize or fabricate conducting polymer nanostructures and their composite nanostructures, each of the currently used methods possess disadvantages. Therefore, finding a facile, efficient, and controlled method of forming conducting polymer nanostructures is desirable. Similar to other nanomaterials, the effect of size (in these cases 1–100 nm) on the properties of the conducting polymer nanostructures must be considered. Electrical measurements of single nanotubes or nanowires are desirable in order to be able to understand the pure electrical properties of conducting polymer nanostructures. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in technological applications because of the unique properties arising from their nanometer‐scaled size: high conductivity, large surface area, and light weight. Thus, it is also desirable to develop promising applications for conducting polymer nanostructures. In accordance with the issues described above, our research focuses on a new synthesis method to form conducting polymer nanostructures and on the related formation mechanism of the resultant nanostructures. The electrical and transport properties of single nanotubes of conducting polymer, measured by a four‐probe method, and promising applications of such template‐free‐synthesized conducting polymer nanostructures as new microwave absorbing materials and sensors guided by a reversible wettability are also of interest. This article reports some of our main results and reviews some important contributions of others.

  相似文献   


4.
Using a dynamic fabrication process, hybrid, photoactivated microswimmers made from two different semiconductors, titanium dioxide (TiO2) and cuprous oxide (Cu2O) are developed, where each material occupies a distinct portion of the multiconstituent particles. Structured light‐activated microswimmers made from only TiO2 or Cu2O are observed to be driven in hydrogen peroxide and water most vigorously under UV or blue light, respectively, whereas hybrid structures made from both of these materials exhibit wavelength‐dependent modes of motion due to the disparate responses of each photocatalyst. It is also found that the hybrid particles are activated in water alone, a behavior which is not observed in those made from a single semiconductor, and thus, the system may open up a new class of fuel‐free photoactive colloids that take advantage of semiconductor heterojunctions. The TiO2/Cu2O hybrid microswimmer presented here is but an example of a broader method for inducing different modes of motion in a single light‐activated particle, which is not limited to the specific geometries and materials presented in this study.  相似文献   

5.
A magnetic urchin‐like microswimmer based on sunflower pollen grain (SPG) that can pierce the cancer cell membrane and actively deliver therapeutic drugs is reported. These drug loaded microperforators are fabricated on a large scale by sequentially treating the natural SPGs with acidolysis, sputtering, and vacuum loading. The microswimmers exhibit precise autonomous navigation and obstacle avoidance in complex environments via association with artificial intelligence. Assemblies of microswimmers can further enhance individual motion performance and adaptability to complicated environments. Additionally, the experimental results demonstrate that microswimmers with nanospikes can accomplish single‐cell perforation for direct delivery under an external rotating magnetic field. Drugs encapsulated in the inner cavity of the microperforators can be accurately delivered to a specific site via remote control. These dual‐action microswimmers demonstrate good biocompatibility, high intelligence, precision in single‐cell targeting, and sufficient drug loading, presenting a promising avenue for many varieties of biomedical applications.  相似文献   

6.
Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small‐scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template‐assisted electrodeposition in 3D‐printed micromolds is presented. The 3D molds are fabricated using a modified two‐photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of “conventional 3D printed helical microswimmers.” The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.  相似文献   

7.
Semiconducting polymers with π‐conjugated electronic structures have potential application in the large‐scale printable fabrication of high‐performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high‐cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π‐conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π–π interaction, several‐layer polymers can be adsorbed onto the graphene planes. The low consumption of the high‐cost semiconductor polymers and the mass production of graphene contribute to the low‐cost fabrication of the π‐conjugated polymer/graphene composite materials. Based on the π‐conjugated system, a reduced π–π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge‐transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π‐conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property‐by‐design fabrication of functional devices with large area, low cost, and high efficiency.  相似文献   

8.
Shape‐transformable liquid metal (LM) micromachines have attracted the attention of the scientific community over the past 5 years, but the inconvenience of transfer routes and the use of corrosive fuels have limited their potential applications. In this work, a shape‐transformable LM micromotor that is fabricated by a simple, versatile ice‐assisted transfer printing method is demonstrated, in which an ice layer is employed as a “sacrificial” substrate that can enable the direct transfer of LM micromotors to arbitrary target substrates conveniently. The resulting LM microswimmers display efficient propulsion of over 60 µm s?1 (≈3 bodylength s?1) under elliptically polarized magnetic fields, comparable to that of the common magnetic micro/nanomotors with rigid bodies. Moreover, these LM micromotors can undergo dramatic morphological transformation in an aqueous environment under the irradiation of an alternating magnetic field. The ability to transform the shape and efficiently propel LM microswimmers holds great promise for chemical sensing, controlled cargo transport, materials science, and even artificial intelligence in ways that are not possible with rigid‐bodies microrobots.  相似文献   

9.
This study reports the pattern definable and low cost fabrication of nanopatterned conducting polymer film on flexible substrates. Noble nanopatterned polymer hard template was fabricated by using nanoimprint lithography (NIL) and used for electropolymerization of conducting polymer. Conducting polymer was electrochemically deposited on the template and transferred over to flexible substrates. Eventually conducting polymer films with various nanopatterns were fabricated on flexible substrates. High pattern definability was achieved by nanoimprinted polymer template, which was molded from lithographically fabricated stamp. Low cost fabrication was accomplished due to low cost NIL, reusable polymer templates, and low material consumption of electrodeposition. The electrodeposited films were transferred using double sided tape. Because the templates are made of flexible polymer, the transfer bonding method applied in this study is adaptable to both wafers and flexible polymer substrates. The fabricated nanopatterned conducting polymer film can be applied to gas sensors, super capacitors, super wetting films, and neuron interfaces due to its characteristic of high surface to volume. For an illustrative application, the gas sensing properties of films were tested. The result showed enhanced sensing characteristic with nanopatterned film, which are attributed to the high surface to volume ratio of nanopatterned films.  相似文献   

10.
Freeze‐casting has attracted great attention as a potential method for manufacturing bioinspired materials with excellent flexibility in microstructure control. The solidification of ice crystals in ceramic colloidal suspensions plays an important role during the dynamic process of freeze‐casting. During solidification, the formation of a microstructure results in a dendritic pattern within the ice‐template crystals, which determines the macroscopic properties of materials. In this paper, the authors propose a phase‐field model that describes the crystallization in an ice template and the evolution of particles during anisotropic solidification. Under the assumption that ceramic particles represent mass flow, namely a concentration field, the authors derive a sharp‐interface model and then transform the model into a continuous initial boundary value problem via the phase‐field method. The adaptive finite‐element technique and generalized single‐step single‐solve (GSSSS) time‐integration method are employed to reduce computational cost and reconstruct microstructure details. The numerical results are compared with experimental results, which demonstrate good agreement. Finally, a microstructural morphology map is constructed to demonstrate the effect of different concentration fields and input cooling rates. The authors observe that at particle concentrations ranging between 25 and 30% and cooling rate lower than ?5° min?1 generates the optimal dendrite structure in freeze casting process.
  相似文献   

11.
Two InP‐based III–V semiconductor etching recipes are presented for fabrication of on‐chip laser photonic devices. Using inductively coupled plasma system with a methane free gas chemistry of chlorine and nitrogen at a high substrate temperature of 250 °C, high aspect ratio, anisotropic InP‐based nano‐structures are etched. Scanning electron microscopy images show vertical sidewall profile of 90° ± 3°, with aspect ratio as high as 10. Atomic Force microscopy measures a smooth sidewall roughness root‐mean‐square of 2.60 nm over a 3 × 3 μm scan area. The smallest feature size etched in this work is a nano‐ring with inner diameter of 240 nm. The etching recipe and critical factors such as chamber pressure and the carrier plate effect are discussed. The second recipe is of low temperature (?10 °C) using Cl2 and BCl3 chemistry. This recipe is useful for etching large areas of III–V to reveal the underlying substrate. The availability of these two recipes has created a flexible III–V etching platform for fabrication of on‐chip laser photonic devices. As an application example, anisotropic InP‐based waveguides of 3 μm width are fabricated using the Cl2 and N2 etch recipe and waveguide loss of 4.5 dB mm?1 is obtained.
  相似文献   

12.
Laser‐acoustics for Testing Coatings and Material Surfaces A laser‐acoustic test method is presented, which can be used for the non‐destructive characterization of coatings and material surfaces. The method measures the dispersion of surface acoustic waves induced by short laser pulses. The technique is based on the fact that the propagation velocity of the wave depends on the frequency in coated and surface modified materials. Measuring the dispersion of the surface acoustic wave enables to determine important properties of the material surface. Three examples demonstrate that the laser‐acoustic method can solve very different problems of surface engineering. The wear resistance of diamond‐like carbon film with a thickness of few nano‐meters was evaluated. The elastic modulus of thermally sprayed coatings which are typically some hundred micro‐meters thick was measured, which allows to conclude on the defect structure of the coatings. The depth of sub‐surface damage layers in semi‐conductor materials was determined, which are created when the wafer is sliced from the ingot.  相似文献   

13.
A universal method that enables utilization of conventional photolithography for processing a variety of polymer semiconductors is developed. The method relies on imparting chemical and physical orthogonality to a polymer film via formation of a semi‐interpenetrating diphasic polymer network with a bridged polysilsesquioxane structure, which is termed an orthogonal polymer semiconductor gel. The synthesized gel films remain tolerant to various chemical and physical etching processes involved in photolithography, thereby facilitating fabrication of high‐resolution patterns of polymer semiconductors. This method is utilized for fabricating tandem electronics, including pn‐complementary inverter logic devices and pixelated polymer light‐emitting diodes, which require deposition of multiple polymer semiconductors through solution processes. This novel and universal method is expected to significantly influence the development of advanced polymer electronics requiring sub‐micrometer tandem structures.  相似文献   

14.
Shell‐core cellular composites are a unique class of cellular materials, where the base constituent is made of a composite material such that the best distinctive physical and/or mechanical properties of each phase of the composite are employed. In this work, the authors demonstrate the additive manufacturing of a nature inspired cellular three‐dimensional (3D), periodic, co‐continuous, and complex composite materials made of a hard‐shell and soft‐core system. The architecture of these composites is based on the Schoen's single Gyroidal triply periodic minimal surface. Results of mechanical testing show the possibility of having a wide range of mechanical properties by tuning the composition, volume fraction of core, shell thickness, and internal architecture of the cellular composites. Moreover, a change in deformation and failure mechanism is observed when employing a shell‐core composite system, as compared to the pure stiff polymeric standalone cellular material. This shell‐core configuration and Gyroidal topology allowed for accessing toughness values that are not realized by the constituent materials independently, showing the suitability of this cellular composite for mechanical energy absorption applications.
  相似文献   

15.
Motile metal?organic frameworks (MOFs) are potential candidates to serve as small‐scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc‐based MOF, zeolitic imidazole framework‐8 (ZIF‐8), with biocompatibility characteristics and pH‐responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields. The proposed systems can achieve single‐cell targeting in a cell culture media and a controlled delivery of cargo payloads inside a complex microfluidic channel network. This new approach toward the fabrication of integrated multifunctional systems will open new avenues in soft microrobotics beyond current applications.  相似文献   

16.
Bottom‐up fabrication of self‐assembled structures made of nanoparticles may lead to new materials, arrays and devices with great promise for myriad applications. Here a new class of metal–peptide scaffolds is reported: coordination polymer Ag(I)‐DLL belt‐like crystals, which enable the dual‐template synthesis of more sophisticated nanoparticle superstructures. In these biorelated scaffolds, the self‐assembly and recognition capacities of peptides and the selective reduction of Ag(I) ions to Ag are simultaneously exploited to control the growth and assembly of inorganic nanoparticles: first on their surfaces, and then inside the structures themselves. The templated internal Ag nanoparticles are well confined and closely packed, conditions that favour electrical conductivity in the superstructures. It is anticipated that these Ag(I)‐DLL belts could be applied to create long (>100 μm) conductive Ag@Ag nanoparticle superstructures and polymetallic, multifunctional Fe3O4@Ag nanoparticle composites that marry the magnetic and conductive properties of the two nanoparticle types.  相似文献   

17.
Cell motility is central to processes such as wound healing, immune cell surveillance, and embryonic development. Motility requires the conversion of chemical to mechanical energy. An active area of research is to create motile particles, such as microswimmers, using catalytic and enzymatic reactions. Here, autonomous motion is demonstrated in adhesive polymer‐based protocells by incorporating and harnessing the energy production of an enzymatic reaction. Biotinylated polymer vesicles that encapsulate catalase, an enzyme which converts hydrogen peroxide to water and oxygen, are prepared and these vesicles are adhered weakly to avidin‐coated surfaces. Upon addition of hydrogen peroxide, which diffuses across the membrane, catalase activity generates a differential impulsive force that enables the breakage and reformation of biotin–avidin bonds, leading to diffusive vesicle motion resembling random motility. The random motility requires catalase, increases with the concentration of hydrogen peroxide, and needs biotin–avidin adhesion. Thus, a protocellular mimetic of a motile cell.  相似文献   

18.
Oxide‐dispersion‐strengthened (ODS) austenitic steels are promising materials for next‐generation fossil and nuclear energy systems. In this study, laser shock peening (LSP) has been applied to ODS 304 austenitic steels, during which a high density of dislocations, stacking faults, and deformation twins are generated in the near surface of the material due to the interaction of laser‐driven shock waves and the austenitic steel matrix. The dispersion particles impede the propagation of dislocations. The compressive residual stress generated by LSP increases with successive LSP scans and decreases along the depth, with a maximum value of ?369 MPa. The hardness on the surface can be improved by 12% using LSP. In situ transmission electron microscopy (TEM) irradiation studies reveal that dislocations and incoherent twin boundaries induced by LSP serve as effective sinks to annihilate irradiation defects. These findings suggest that LSP can improve the mechanical properties and irradiation resistance of ODS austenitic steels in nuclear reactor environments.
  相似文献   

19.
Self‐propelled micromachines have recently attracted lots of attention for environmental remediation. Developing a large‐scale but template‐free fabrication of self‐propelled rod/tubular micro/nanomotors is very crucial but still challenging. Here, a new strategy based on vertically aligned ZnO arrays is employed for the large‐scale and template‐free fabrication of self‐propelled ZnO‐based micromotors with H2O2‐free light‐driven propulsion ability. Brush‐shaped ZnO‐based micromotors with different diameters and lengths are fully studied, which present a fast response to multicycles UV light on/off switches with different interval times (2/5 s) in pure water and slow directional motion in aqueous hydrogen peroxide solution in the absence of UV light. Light‐induced electrophoretic and self‐diffusiophoretic effects are responsible for these two different self‐motion behaviors under different conditions, respectively. In addition, the pH of the media and the presence of H2O2 show important effects on the motion behavior and microstructure of the ZnO‐based micromotors. Finally, these novel ZnO‐based brush‐shaped micromotors are demonstrated in a proof‐of‐concept study on nitroaromatic explosive degradation, i.e., picric acid. This work opens a completely new avenue for the template‐free fabrication of brush‐shaped light‐responsive micromotors on a large scale based on vertically aligned ZnO arrays.  相似文献   

20.
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self‐assembly of semiconducting single walled carbon nanotubes (s‐SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s‐SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self‐assembly of the selected s‐SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s‐SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s‐SWNT purity. Field‐effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self‐assembly of the SWNTs/thiolated‐polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm2 V?1 s?1), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号