首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excess lead(II) iodide (PbI2) has controversial roles in affecting the efficiency of perovskite solar cells (PSCs). Since the photoinstability of PbI2 is now known to largely accelerate perovskite degradation, suppressing and/or eliminating excess PbI2 is key to improving the stability of PSCs. Herein, process-dependent PbI2 formation on the surfaces of formamidinium lead triiodide (FAPbI3) films is examined. Due to the faster evaporation rate of organic substances, crystalline PbI2 as an inclusion is found within the triple junction grain boundaries. With this hypothesis, two strategies are suggested: control of the 1) vapor pressure and 2) stoichiometry of precursor solutions to induce sufficient reaction of FAPbI3. Although both strategies successfully eliminate the PbI2 as inclusions, due to the slower evaporation rate, vapor pressure control films also exhibit a larger grain size (≈1.18 µm) with a good film quality to attain the highest power conversion efficiency (PCE) of 24.5%. Furthermore, the phase stability of α-FAPbI3 is improved due to the elimination of the degradation sites induced by the photoinstability of PbI2. The findings explore the formation process of unwanted PbI2 (≈2.8%) and provide a simple method to effectively suppress its formation. This may further boost the PCE and stability, especially for FA-based perovskites.  相似文献   

2.
Formamidinium lead triiodide (FAPbI3)‐based perovskite materials are of interest for photovoltaics in view of their close‐to‐ideal bandgap, allowing absorption of photons over a broad solar spectrum. However, FAPbI3‐based materials suffer from a notorious phase transition from the photoactive black phase (α‐FAPbI3) to nonperovskite yellow phase (δ‐FAPbI3) under ambient conditions. This transition dramatically reduces light absorbtion, thus, degrading the photovoltaic performance and stability of ensuring solar cells. In this study, 1‐hexyl‐3‐methylimidazolium iodide (HMII) ionic liquid (IL) is employed as an additive for the first time in FAPbI3 perovskite to overcome the above‐mentioned issues. HMII incorporation facilitates the grain coarsening of FAPbI3 crystal owing to its high‐polarity and high‐boiling point, which yields liquid domains between neighboring grains to reduce the activation energy of the grain‐boundary migration. As a result, the FAPbI3 active layer exhibits micron‐sized grains with substantially suppressed parasitic traps with an Urbach energy reduced by 2 meV. Hence, the resulting perovskite solar cell achieves an efficiency of 20.6% with notable increase in open circuit voltage (VOC) of 80 mV compared with HMII‐free cells (17.1%). More importantly, the HMII‐doped FAPbI3‐based cells show a striking enhancement in shelf‐stability under high humidity and thermal stress, retaining >80% of their initial efficiencies at 60 ± 10% relative humidity and ≈95% at 65 °C.  相似文献   

3.
Organic–inorganic hybrid perovskites have reached an unprecedented high efficiency in photovoltaic applications, which makes the commercialization of perovskite solar cells (PSCs) possible. In the past several years, particular attention has been paid to the stability of PSC devices, which is a critical issue for becoming a practical photovoltaic technology. In particular, the interface-induced degradation of perovskites should be the dominant factor causing poor stability. Here, imidazole bromide functionalized graphene quantum dots (I-GQDs) are demonstrated to regulate the interface between the electron transport layer (ETL) and formamidinium lead iodide (FAPbI3) perovskite layer. The incorporation of I-GQDs not only reduces the interface defects for achieving a better energy level alignment between ETL and perovskite, but also improves the film quality of FAPbI3 perovskite including enlarged grain size, lower trap density, and a longer carrier lifetime. Consequently, the planar FAPbI3 PSCs with I-GQDs regulation achieve a high efficiency of 22.37% with enhanced long-term stability.  相似文献   

4.
The substrates of conventional flexible perovskite solar cells (FPSCs) are thermoplastic polymer material polyethylene naphthalate (PEN), which will deform during high temperature annealing process. In addition, lead iodide (PbI2) permanently formed and the substrate undergoes reversible deformation from 20 °C to 200 °C and back to 20 °C. Therefore, to balance the substrate supporting capacity and the crystalline quality of narrow band gap α-phase formamidinium lead iodide (α-FAPbI3), an annealing process of 120 °C for 30 minutes is determined. Additionally, there will also be a large number of gaps and lattice strain at the perovskite grain boundaries during the annealing process as the FAPbI3 phase transition is accompanied by much lattice shrinkage. As a result, 1,6-hexanediammonium diiodide (HADI) is chosen to passivate the defects and release the stress of perovskite film. Therefore, a recorded 1.4% extended stretch rate of the flexible film is attained. Finally, the champion PCE of 21.14% under AM 1.5G and 31.52% under 1062 lux is achieved after HADI treatment, accompanied by a better long-term and mechanical stability. This study provides annealing process optimization and stress relief strategies for the further development of narrow band gap FPSCs.  相似文献   

5.
Perovskite solar cells (PSCs) based on organic monovalent cation (methylammonium or formamidinium) have shown excellent optoelectronic properties with high efficiencies above 22%, threatening the status of silicon solar cells. However, critical issues of long‐term stability have to be solved for commercialization. The severe weakness of the state‐of‐the‐art PSCs against moisture originates mainly from the hygroscopic organic cations. Here, rubidium (Rb) is suggested as a promising candidate for an inorganic–organic mixed cation system to enhance moisture‐tolerance and photovoltaic performances of formamidinium lead iodide (FAPbI3). Partial incorporation of Rb in FAPbI3 tunes the tolerance factor and stabilizes the photoactive perovskite structure. Phase conversion from hexagonal yellow FAPbI3 to trigonal black FAPbI3 becomes favored when Rb is introduced. The authors find that the absorbance and fluorescence lifetime of 5% Rb‐incorporated FAPbI3 (Rb0.05FA0.95PbI3) are enhanced than bare FAPbI3. Rb0.05FA0.95PbI3‐based PSCs exhibit a best power conversion efficiency of 17.16%, which is much higher than that of the FAPbI3 device (13.56%). Moreover, it is demonstrated that the Rb0.05FA0.95PbI3 film shows superior stability against high humidity (85%) and the full device made with the mixed perovskite exhibits remarkable long‐term stability under ambient condition without encapsulation, retaining the high performance for 1000 h.  相似文献   

6.
Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next-generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias-dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias-dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias-induced degradation of PSCs as well as bias-dependent double-edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs.  相似文献   

7.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

8.
Metal halide perovskites have revolutionized the development of highly efficient, solution‐processable solar cells. Further advancements rely on improving perovskite film qualities through a better understanding of the underlying growth mechanism. Here, a systematic in situ grazing‐incidence X‐ray diffraction investigation is performed, facilitated by other techniques, on the sequential deposition of formamidinium lead iodide (FAPbI3)‐based perovskite films. The active chemical reaction, composition distribution, phase transition, and crystal grain orientation are all visualized following the entire perovskite formation process. Furthermore, the influences of additive ions on the crystallization speed, grain orientation, and morphology of FAPbI3‐based films, along with their photovoltaic performances, are fully evaluated and optimized, which leads to highly reproducible and efficient perovskite solar cells. The findings provide key insights into the perovskite growth mechanism and suggest the fabrication of high‐quality perovskite films for widespread optoelectronic applications.  相似文献   

9.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

10.
Organic–inorganic formamidinium lead triiodide (FAPbI3) hybrid perovskite quantum dot (QD) is of great interest to photovoltaic (PV) community due to its narrow band gap, higher ambient stability, and long carrier lifetime. However, the surface ligand management of FAPbI3 QD is still a key hurdle that impedes the design of high-efficiency solar cells. Herein, this study first develops a solution-mediated ligand exchange (SMLE) for preparing FAPbI3 QD film with enhanced electronic coupling. By dissolving optimal methylammonium iodide (MAI) into antisolvent to treat the FAPbI3 QD solution, the SMLE can not only effectively replace the long-chain ligands, but also passivate the A- and X-site vacancies. By combining experimental and theoretical results, this study demonstrates that the SMLE engineered FAPbI3 QD exhibits lower defect density, which is beneficial for fabricating high-quality QD arrays with desired morphology and carrier transport. Consequently, the SMLE FAPbI3 QD based solar cell outputs a champion efficiency of 15.10% together with improved long-term ambient storage stability, which is currently the highest reported value for hybrid perovskite QD solar cells. These results would provide new design principle of hybrid perovskite QDs toward high-performance optoelectronic application.  相似文献   

11.
Formamidinium lead triiodide (FAPbI3) has been demonstrated as the most efficient perovskite system to date, due to its excellent thermal stability and an ideal bandgap approaching the Shockley-Queisser limit. Whereas, there are intrinsic quantum confinement effects in FAPbI3, which lead to unwanted non-radiative recombination. Additionally, the black α-phase of FAPbI3 is unstable under room temperature due to the significant residual tensile stress in the film. To simultaneously address the above issues, a thermally-activated delayed fluorescence polymer P1 is designed in the study to modify the FAPbI3 film. Owing to the spectral overlap between the photoluminescence of P1 and absorption of the above-bandgap quantum wells of FAPbI3, the Förster energy transfer occurs at the P1/FAPbI3 interface, which further triggers the Dexter energy transfer within FAPbI3. The exciton “recycling” can thus be realized, which reduces the non-radiative recombination losses in perovskite solar cells (PSCs). Moreover, P1 is found to introduce compressive stress into FAPbI3, which relieves the tensile stress in perovskite. Consequently, the PSCs with P1 treatment achieve an outstanding power conversion efficiency (PCE) of 23.51%. Moreover, with the alleviation of stress in the perovskite film, flexible PSCs (f-PSCs) also deliver a high PCE of 21.40%.  相似文献   

12.
Recently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI3) films through a one‐step spin‐coating process. Furthermore, the FAPbI3 perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA+ ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.  相似文献   

13.
Mixed‐cation perovskite solar cells (PSCs) have become of enormous interest because of their excellent efficiency, which is now crossing 23.7%. Their broader absorption, relatively high stability with low fabrication cost compared to conventional single phase ABX3 perovskites (where A: organic cation; B: divalent metal ion; and X: halide anion) are key properties of mixed‐halide mixed‐cation perovskites. However, the controlling reaction rate and formation of extremely dense, textured, smooth, and large grains of perovskite layer is a crucial task in order to achieve highly efficient PSCs. Herein, a new simple dual‐retarded reaction processing (DRP) method is developed to synthesize a high‐quality mixed‐cation (FAPbI3)0.85(MAPbBr3)0.15 (where MAPbBr3 stands for methylammonium lead bromide and FAPbI3 stands for formamidinium lead iodide) perovskite thin film via intermediate phase and incorporation of nitrogen‐doped reduced graphene oxide (N‐rGO). The reaction rate is retarded via two steps: first the formation of intermediate phase and second the interaction of the nitrogen groups on N‐rGO with hydrogen atoms from formamidinium cations. This DRP process allows for the fabrication of PSCs with maximum conversion efficiency higher than 20.3%.  相似文献   

14.
Organic-inorganic hybrid perovskite solar cells (PSCs) have developed rapidly in recent years, and the instability limits its commercialization. Non-radiative recombination caused by defects and water stability affect the device stability. Here we introduce an organic silane additive, tetramethoxysilane (TMOS), which can reduce the non-radiative recombination and prevent the water erosion. The methoxy group in TMOS can combine with Pb2+ of perovskite to passivate undercoordinated Pb2+ defects and reduce non-radiative recombination. Under a certain humidity, the hydrolyzed product SiO2 can occupy the grain boundary sites to prevent the erosion of water molecules, slow down the degradation of perovskite, and improve the crystal phase stability of perovskite. The PCE of the device increases from 17.13% to 20.12%. After 400 h at 50% relative humidity (RH), the PSC with 2% TMOS can maintain the efficiency of 90%, while the efficiency of the control group quickly dropped to only 70% of the initial.  相似文献   

15.
Surface passivation via 2D perovskite is critical for perovskite solar cells (PSCs) to achieve remarkable performances, in which the applied spacer cations play an important role on structural templating. However, the random orientation of 2D perovskite always hinder the carrier transport. Herein, multiple nitrogen sites containing organic spacer molecule (1H-Pyrazole-1-carboxamidine hydrochloride, PAH) is introduced to form 2D passivation layer on the surface of formamidinium based (FAPbI3) perovskite. Deriving from the interactions between PAH and PbI2, the defects of FAPbI3 perovskite are effectively passivated. Interestingly, due to the multiple-site interactions, the 2D nanosheets are found to grow perpendicularly to the substrate for promotion of charge transfer. Therefore, an impressive power conversion efficiency of 24.6% and outstanding long-term stability are achieved for the 2D/3D perovskite devices. The findings further provide a perspective in structure design of novel organic halide salts for the fabrication of efficient and stable PSCs.  相似文献   

16.
State‐of‐the‐art optoelectronic devices based on metal‐halide perovskites demand solution‐processed structures with high crystallinity, controlled crystallographic orientation, and enhanced environmental stability. Formamidinium lead iodide (α‐FAPbI3) possesses a suitable bandgap of 1.48 eV and enhanced thermal stability, whereas perovskite‐type polymorph (α‐phase) is thermodynamically instable at ambient temperatures. Stable α‐FAPbI3 perovskite 1D structure arrays with high crystallinity and ordered crystallographic orientation are developed by controlled nucleation and growth in capillary bridges. By surface functionalization with phenylethylammonium ions (PEA+), FAPbI3 wires sustain a stable α‐phase after 28 day storage in the ambient environment with a relative humidity of 50%. Enhanced photoluminescence (PL) intensity and elongated PL lifetime demonstrate suppressed trap density and high crystallinity in these 1D structures, which is also reflected by the enhanced diffraction density and pure (001) crystallographic orientation in the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) pattern. Based on these high‐quality 1D structures, sensitive photodetectors are achieved with average responsivities of 5282 A W?1, average specific detectivities of more than 1.45 × 1014 Jones, and a fast response speed with a 3 dB bandwidth of 15 kHz.  相似文献   

17.
Formamidinium lead triiodide (FAPbI3) with an ideal bandgap and good thermal stability has received wide attention and achieved a record efficiency of 26% in n–i–p (regular) perovskite solar cells (PSCs). However, imperfect FAPbI3 formation on the typical hole transport layer (HTL), high interfacial trap-state density, and unfavorable energy alignment between the HTL and FAPbI3 result in the inferior photovoltaic performance of p–i–n (inverted) PSCs with FAPbI3 absorber. Herein, the α-phase FAPbI3 is stabilized by constructing a buffer interface region between the NiOx HTL and FAPbI3, which not only diminishes NiOx/FAPbI3 interfacial reactions and defects but also facilitates carrier transport. Upon the construction of a buffer interface region, FAPbI3 inverted PSC exhibits a high-power conversion efficiency of 23.56% (certified 22.58%) and excellent stability, retaining 90.7% of its initial efficiency after heating at 80 °C for 1000 h and 84.6% of the initial efficiency after operating at the maximum power point under continuous illumination for 1100 h. Besides, as a light-emitting diode device, the FAPbI3 inverted PSC can be directly lit with an external quantum efficiency of 1.36%. This study provides a unique and efficient strategy to advance the application of α-phase FAPbI3 in inverted PSCs.  相似文献   

18.
There is an ongoing surge of interest in the use of formamidinium (FA) lead iodide perovskites in photovoltaics due to their exceptional optoelectronic properties. However, thermodynamic instability of the desired cubic perovskite (α-FAPbI3) phase at ambient conditions leads to the formation of a yellow non-perovskite (δ-FAPbI3) phase that compromises its utility. A stable α-FAPbI3 perovskite phase is achieved by employing benzylammonium iodide (BzI) and the microscopic structure is elucidated by using solid-state NMR spectroscopy and X-ray scattering measurements. Perovskite solar cells based on the FAPbI3(BzI)0.25 composition achieve power conversion efficiencies exceeding 20%, which is accompanied by enhanced shelf-life and operational stability, maintaining 80% of the performance after one year at ambient conditions.  相似文献   

19.
Mixed cation hybrid perovskites such as CsxFA1?xPbI3 are promising materials for solar cell applications, due to their excellent photoelectronic properties and improved stability. Although power conversion efficiencies (PCEs) as high as 18.16% have been reported, devices are mostly processed by the anti‐solvent method, which is difficult for further scaling‐up. Here, a method to fabricate CsxFA1?xPbI3 by performing Cs cation exchange on hybrid chemical vapor deposition grown FAPbI3 with the Cs+ ratio adjustable from 0 to 24% is reported. The champion perovskite module based on Cs0.07FA0.93PbI3 with an active area of 12.0 cm2 shows a module PCE of 14.6% and PCE loss/area of 0.17% cm?2, demonstrating the significant advantage of this method toward scaling‐up. This in‐depth study shows that when the perovskite films prepared by this method contain 6.6% Cs+ in bulk and 15.0% at the surface, that is, Cs0.07FA0.93PbI3, solar cell devices show not only significantly increased PCEs but also substantially improved stability, due to favorable energy level alignment with TiO2 electron transport layer and spiro‐MeOTAD hole transport layer, increased grain size, and improved perovskite phase stability.  相似文献   

20.
High-purity black α-phase formamidinium lead iodide (FAPbI3, FA is NH2CHNH+) perovskite polycrystalline film was prepared using low-cost, high-output doctor-blading deposition technique in ambient condition without further annealing process and any additives. The resulting α-phase FAPbI3 perovskite has a large domain size over 200 μm with (00l) preferential crystallographic orientation. The photodetectors with an extremely simple structure were fabricated via doctor-blading, resulting in a responsivity as high as 11.46 AW−1, a ratio of photocurrent/dark current (Ilight/Idark) as large as 105 and a response speed as fast as 5.4 ms. The results suggest that low-cost doctor-blading technique in ambient condition potentially pave a way to eliminate the yellow δ-phase FAPbI3 and get a high-quality black α-FAPbI3 perovskite film, as well as fabricate efficient FAPbI3 perovskite optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号