共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Anton Enders Ina G. Siller Katharina Urmann Michael R. Hoffmann Janina Bahnemann 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(2)
One of the basic operations in microfluidic systems for biological and chemical applications is the rapid mixing of different fluids. However, flow profiles in microfluidic systems are laminar, which means molecular diffusion is the only mixing effect. Therefore, mixing structures are crucial to enable more efficient mixing in shorter times. Since traditional microfabrication methods remain laborious and expensive, 3D printing has emerged as a potential alternative for the fabrication of microfluidic devices. In this work, five different passive micromixers known from literature are redesigned in comparable dimensions and manufactured using high‐definition MultiJet 3D printing. Their mixing performance is evaluated experimentally, using sodium hydroxide and phenolphthalein solutions, and numerically via computational fluid dynamics. Both experimental and numerical analysis results show that HC and Tesla‐like mixers achieve complete mixing after 0.99 s and 0.78 s, respectively, at the highest flow rate (Reynolds number (Re) = 37.04). In comparison, Caterpillar mixers exhibit a lower mixing rate with complete mixing after 1.46 s and 1.9 s. Furthermore, the HC mixer achieves very good mixing performances over all flow rates (Re = 3.7 to 37.04), while other mixers show improved mixing only at higher flow rates. 相似文献
3.
4.
5.
3D打印技术研究现状和关键技术EI北大核心CSCD 总被引:10,自引:0,他引:10
本文首先简要介绍了3D打印技术的基本原理及分类,然后重点介绍了有关金属材料3D打印的几种方法:电子束熔化成形(EBM)、激光选区熔化成形(SLM)、激光快速成形技术(LDMD)。简述了金属材料3D打印的应用领域及国内外发展情况及研究现状。文章最后结合国内外金属材料3D打印的研究现状,指出金属材料3D打印需要在打印用粉末、金属3D打印设备、3D打印零件无损检测方法、3D打印零件的失效行为和寿命预测等方面进行重点研究,并建立3D打印零件的无损检测标准规范以及3D打印材料全面力学性能数据库。 相似文献
6.
《工程(英文)》2020,6(11):1232-1243
Over the past 30 years, additive manufacturing (AM) has developed rapidly and has demonstrated great potential in biomedical applications. AM is a materials-oriented manufacturing technology, since the solidification mechanism, architecture resolution, post-treatment process, and functional application are based on the materials to be printed. However, 3D printable materials are still quite limited for the fabrication of bioimplants. In this work, 2D/3D AM materials for bioimplants are reviewed. Furthermore, inspired by Tai Chi, a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group. With the development of multi-material printing technology, the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated. 相似文献
7.
Sung Hyun Park Ruitao Su Jaewoo Jeong Shuang‐Zhuang Guo Kaiyan Qiu Daeha Joung Fanben Meng Michael C. McAlpine 《Advanced materials (Deerfield Beach, Fla.)》2018,30(40)
Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices. 相似文献
8.
9.
Hui Yang Wan Ru Leow Ting Wang Juan Wang Jiancan Yu Ke He Dianpeng Qi Changjin Wan Xiaodong Chen 《Advanced materials (Deerfield Beach, Fla.)》2017,29(33)
Compared with traditional stimuli‐responsive devices with simple planar or tubular geometries, 3D printed stimuli‐responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. 相似文献
10.
Shanmugam Kumar Brian L. Wardle Muhamad F. Arif Jabir Ubaid 《Advanced Engineering Materials》2018,20(1)
Multilayered multi‐material interfaces are encountered in an array of fields. Here, enhanced mechanical performance of such multi‐material interfaces is demonstrated, focusing on strength and stiffness, by employing bondlayers with spatially‐tuned elastic properties realized via 3D printing. Compliance of the bondlayer is varied along the bondlength with increased compliance at the ends to relieve stress concentrations. Experimental testing to failure of a tri‐layered assembly in a single‐lap joint configuration, including optical strain mapping, reveals that the stress and strain redistribution of the compliance‐tailored bondlayer increases strength by 100% and toughness by 60%, compared to a constant modulus bondlayer, while maintaining the stiffness of the joint with the homogeneous stiff bondlayer. Analyses show that the stress concentrations for both peel and shear stress in the bondlayer have a global minimum when the compliant bond at the lap end comprises ≈10% of the bondlength, and further that increased multilayer performance also holds for long (relative to critical shear transfer length) bondlengths. Damage and failure resistance of multi‐material interfaces can be improved substantially via the compliance‐tailoring demonstrated here, with immediate relevance in additive manufacturing joining applications, and shows promise for generalized joining applications including adhesive bonding. 相似文献
11.
Frederik Kotz Patrick Risch Dorothea Helmer Bastian E. Rapp 《Advanced materials (Deerfield Beach, Fla.)》2019,31(26)
3D printing has emerged as an enabling technology for miniaturization. High‐precision printing techniques such as stereolithography are capable of printing microreactors and lab‐on‐a‐chip devices for efficient parallelization of biological and biochemical reactions under reduced uptake of reactants. In the world of chemistry, however, up until now, miniaturization has played a minor role. The chemical and thermal stability of regular 3D printing resins is insufficient for sustaining the harsh conditions of chemical reactions. Novel material formulations that produce highly stable 3D‐printed chips are highly sought for bringing chemistry up‐to‐date on the development of miniaturization. In this work, a brief review of recent developments in highly stable materials for 3D printing is given. This work focuses on three highly stable 3D‐printable material systems: transparent silicate glasses, ceramics, and fluorinated polymers. It is further demonstrated that 3D printing is also a versatile technique for surface structuring of polymers to enhance their wetting performance. Such micro/nanostructuring is key to selectively wetting surface patterns that are versatile for chemical arrays and droplet synthesis. 相似文献
12.
The additive‐manufacturing (AM) technique, known as three‐dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D‐printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO‐based materials, have been extensively reported for energy‐related applications. In these circumstances, understanding the very recent developments of 3D‐printed carbon materials and their extended applications to address energy‐related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy‐related applications are reviewed, including energy‐storage applications, electronic circuits, and thermal‐energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D‐printing technology based on carbon materials for energy‐related applications and beyond. 相似文献
13.
3D printing (3DP) has transformed engineering, manufacturing, and the use of advanced materials due to its ability to produce objects from a variety of materials, ranging from soft polymers to rigid ceramics. 3DP offers the advantage of being able to print at a variety of lengths scales; from a few micrometers to many meters. 3DP has the unique ability to produce customized small lots, efficiently. Yet, one crucial industry that has not been able to adequately explore its potential is textile manufacturing. The research in 3DP of textiles has lagged behind other areas primarily due to the difficulty in obtaining some of the unique characteristics of strength, flexibility, etc., of textiles, utilizing a fundamentally different manufacturing technology. Textiles are their own class of materials due to the specific structural developments that occur during the various stages of textile manufacturing: from fiber extrusion to assembly of the fibers to fabrics. Here, the current 3DP technologies are reviewed with emphasis on soft and anisotropic structures, as well as the efforts toward 3DP of textiles. Finally, a potential pathway to 3DP of textiles, dubbed as printing with fibers to create textile structures is proposed for further exploration. 相似文献
14.
15.
3D打印是以计算机图形数据为基础,通过逐层堆积的方式构建实体,具有高柔性制造以及对复杂零件自由快速成形的特点.从文献研究入手,重点介绍了光固化成形、熔融沉积制造、选区激光烧结、选区激光熔化、三维印刷成形、分层实体制造等典型3D打印工艺的成形原理以及研究进展,在此基础上着重概述了3D打印在生物医学、航空航天、建筑工程领域的应用.简要分析了当前3D打印技术发展中存在的一些问题并提出了一系列解决方案.3D打印技术的出现,给传统制造技术带来了革命性改变,其应用范围广泛,未来一定会融入到人们生活的方方面面. 相似文献
16.
17.
18.
19.
Steven D. Lacey Dylan J. Kirsch Yiju Li Joseph T. Morgenstern Brady C. Zarket Yonggang Yao Jiaqi Dai Laurence Q. Garcia Boyang Liu Tingting Gao Shaomao Xu Srinivasa R. Raghavan John W. Connell Yi Lin Liangbing Hu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(12)
A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL?1) can be readily achieved. The shear‐thinning behavior of the aqueous hGO ink enables extrusion‐based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4–25 nm through‐holes on hGO sheets), microscale (tens of micrometer‐sized pores introduced by lyophilization), and macroscale (<500 µm square pores of the mesh design), which are advantageous for high‐performance energy storage devices that rely on interfacial reactions to promote full active‐site utilization. To elucidate the benefit of (nano)porosity and structurally conscious designs, the additive‐free architectures are demonstrated as the first 3D printed lithium–oxygen (Li–O2) cathodes and characterized alongside 3D printed GO‐based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high‐energy‐density battery systems. 相似文献
20.
Vladimir Egorov Umair Gulzar Yan Zhang Siobhán Breen Colm O'Dwyer 《Advanced materials (Deerfield Beach, Fla.)》2020,32(29):2000556
Additive manufacturing has revolutionized the building of materials, and 3D-printing has become a useful tool for complex electrode assembly for batteries and supercapacitors. The field initially grew from extrusion-based methods and quickly evolved to photopolymerization printing, while supercapacitor technologies less sensitive to solvents more often involved material jetting processes. The need to develop higher-resolution multimaterial printers is borne out in the performance data of recent 3D printed electrochemical energy storage devices. Underpinning every part of a 3D-printable battery are the printing method and the feed material. These influence material purity, printing fidelity, accuracy, complexity, and the ability to form conductive, ceramic, or solvent-stable materials. The future of 3D-printable batteries and electrochemical energy storage devices is reliant on materials and printing methods that are co-operatively informed by device design. Herein, the material and method requirements in 3D-printable batteries and supercapacitors are addressed and requirements for the future of the field are outlined by linking existing performance limitations to requirements for printable energy-storage materials, casings, and direct printing of electrodes and electrolytes. A guide to materials and printing method choice best suited for alternative-form-factor energy-storage devices to be designed and integrated into the devices they power is thus provided. 相似文献