首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodic mesoporous organosilica nanoparticles emerge as promising vectors for nanomedicine applications. Their properties are very different from those of well‐known mesoporous silica nanoparticles as there is no silica source for their synthesis. So far, they have only been synthesized from small bis‐silylated organic precursors. However, no studies employing large stimuli‐responsive precursors have been reported on such hybrid systems yet. Here, the synthesis of porphyrin‐based organosilica nanoparticles from a large octasilylated metalated porphyrin precursor is described for applications in near‐infrared two‐photon‐triggered spatiotemporal theranostics. The nanoparticles display unique interconnected large cavities of 10–80 nm. The framework of the nanoparticles is constituted with J‐aggregates of porphyrins, which endows them with two‐photon sensitivity. The nanoparticle efficiency for intracellular tracking is first demonstrated by the in vitro near‐infrared imaging of breast cancer cells. After functionalization of the nanoparticles with aminopropyltriethoxysilane, two‐photon‐excited photodynamic therapy in zebrafish is successfully achieved. Two‐photon photochemical internalization in cancer cells of the nanoparticles loaded with siRNA is also performed for the first time. Furthermore, siRNA targeting green fluorescent protein complexed with the nanoparticles is delivered in vivo in zebrafish embryos, which demonstrates the versatility of the nanovectors for biomedical applications.  相似文献   

2.
The assembly of low‐fouling polymer capsules with redox‐responsive behavior and intracellular degradability is reported. Thiol‐containing poly(2‐ethyl‐2‐oxazoline) (PEtOxMASH) brushes are synthesized by atom transfer radical polymerization (ATRP) of oligo(2‐ethyl‐2‐oxazoline)methacrylate and glycidyl methacrylate (GMA) and subsequent ring‐opening reaction of the GMA. Sequential deposition of PEtOxMASH/poly(methacrylic acid) (PMA) multilayers onto silica (SiO2) particle templates and crosslinking through disulfide formation yield stable capsules after the removal of the SiO2 templates by buffered hydrofluoric acid (HF). The redox‐responsive nature of the disulfide crosslinking groups enables the degradation of these capsules under simulated intracellular conditions at pH 5.9 and 5 mm glutathione (GSH). Furthermore, capsule degradation is observed after incubation with dendritic (JAWS II) cells. Even at high capsule‐to‐cell ratios, PEtOxMASH capsules show only negligible cytotoxicity. Quartz crystal microgravimetry (QCM) studies, using 100% human serum, reveal that films prepared from PEtOxMASH exhibit low‐fouling properties. The degradation and low‐fouling properties are promising for application of PEtOxMASH films/capsules for the delivery and triggered release of therapeutics.  相似文献   

3.
Engineering multifunctional nanocarriers for targeted drug delivery shows promising potentials to revolutionize the cancer chemotherapy. Simple methods to optimize physicochemical characteristics and surface composition of the drug nanocarriers need to be developed in order to tackle major challenges for smooth translation of suitable nanocarriers to clinical applications. Here, rational development and utilization of multifunctional mesoporous silica nanoparticles (MSNPs) for targeting MDA‐MB‐231 xenograft model breast cancer in vivo are reported. Uniform and redispersible poly(ethylene glycol)‐incorporated MSNPs with three different sizes (48, 72, 100 nm) are synthesized. They are then functionalized with amino‐β‐cyclodextrin bridged by cleavable disulfide bonds, where amino‐β‐cyclodextrin blocks drugs inside the mesopores. The incorporation of active folate targeting ligand onto 48 nm of multifunctional MSNPs (PEG‐MSNPs48‐CD‐PEG‐FA) leads to improved and selective uptake of the nanoparticles into tumor. Targeted drug delivery capability of PEG‐MSNPs48‐CD‐PEG‐FA is demonstrated by significant inhibition of the tumor growth in mice treated with doxorubicin‐loaded nanoparticles, where doxorubicin is released triggered by intracellular acidic pH and glutathione. Doxorubicin‐loaded PEG‐MSNPs48‐CD‐PEG‐FA exhibits better in vivo therapeutic efficacy as compared with free doxorubicin and non‐targeted nanoparticles. Current study presents successful utilization of multifunctional MSNP‐based drug nanocarriers for targeted cancer therapy in vivo.  相似文献   

4.
Here, a new type of structure‐invertible, redox‐responsive polymeric nanoparticle for the efficient co‐delivery of nucleic acids and hydrophobic drugs in vitro and in vivo is reported for the first time, to combat the major challenges facing combination cancer therapy. The co‐delivery vector, which is prepared by conjugating branched poly(ethylene glycol) with dendrimers of two generations (G2) through disulfide linkages, is able to complex nucleic acids and load hydrophobic drugs with high loading capacity through structure inversion. The cleavage of disulfide linkages at intracellular glutathione‐rich reduction environment significantly decreases the cytotoxicity, and promotes more efficient drug release and gene transfection in vitro and in vivo. The co‐delivery carrier also displays enhanced endosomal escape capability and improved serum stability in vitro as compared with G2, and exhibits prolonged residence time and stronger transfection activity in vivo. Most importantly, co‐delivery of doxorubicin (DOX) and B‐cell lymphoma 2 (Bcl‐2) small interfering RNA (siRNA) exerts a combinational effect against tumor growth in murine tumor models in vivo, which is much more effective than either DOX or Bcl‐2 siRNA‐based monotherapy. The structure‐invertible nanoparticles may constitute a promising stimuli‐responsive system for the efficacious co‐delivery of multiple cargoes in future clinical applications of combination cancer therapies.  相似文献   

5.
Multifunctional mesoporous silica nanoparticles are developed in order to deliver anticancer drugs to specific cancer cells in a targeted and controlled manner. The nanoparticle surface is functionalized with amino‐β‐cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. Poly(ethylene glycol) polymers, functionalized with an adamantane unit at one end and a folate unit at the other end, are immobilized onto the nanoparticle surface through strong β‐cyclodextrin/adamantane complexation. The non‐cytotoxic nanoparticles containing the folate targeting units are efficiently trapped by folate‐receptor‐rich HeLa cancer cells through receptormmediated endocytosis, while folate‐receptor‐poor human embryonic kidney 293 normal cells show much lower endocytosis towards nanoparticles under the same conditions. The nanoparticles endocytosed by the cancer cells can release loaded doxorubicin into the cells triggered by acidic endosomal pH. After the nanoparticles escape from the endosome and enter into the cytoplasm of cancer cells, the high concentration of glutathione in the cytoplasm can lead to the removal of the β‐cyclodextrin capping rings by cleaving the pre‐installed disulfide bonds, further promoting the release of doxorubicin from the drug carriers. The high drug‐delivery efficacy of the multifunctional nanoparticles is attributed to the co‐operative effects of folate‐mediated targeting and stimuli‐triggered drug release. The present delivery system capable of delivering drugs in a targeted and controlled manner provides a novel platform for the next generation of therapeutics.  相似文献   

6.
Exploiting exogenous and endogenous stimulus‐responsive degradable nanoparticles as drug carriers can improve drug delivery systems (DDSs). The use of hollow nanoparticles may facilitate degradation, and combination of DDS with photodynamic therapy (PDT) and photothermal therapy (PTT) may enhance the anticancer effects of treatments. Here, a one‐pot synthetic method is presented for an anticancer drug (doxorubicin [DOX]) and photosensitizer‐containing hollow hybrid nanoparticles (HNPs) with a disulfide and siloxane framework formed in response to exogenous (light) and endogenous (intracellular glutathione [GSH]) stimuli. The hollow HNPs emit fluorescence within the near‐infrared window and allow for the detection of tumors in vivo by fluorescence imaging. Furthermore, the disulfides within the HNP framework are cleaved by intracellular GSH, deforming the HNPs. Light irradiation facilitates penetration of GSH into the HNP framework and leads to the collapse of the HNPs. As a result, DOX is released from the hollow HNPs. Additionally, the hollow HNPs generate singlet oxygen (1O2) and heat in response to light; thus, fluorescence imaging of tumors combined with trimodal therapy consisting of DDS, PDT, and PTT is feasible, resulting in superior therapeutic efficacy. Thus, this method may have several applications in imaging and therapeutics in the future.  相似文献   

7.
Polo‐like kinase 1 (PLK1) and polo‐like kinase 4 (PLK4) are closely associated with the progression of several cancers, and their bispecific inhibitors can kill tumor cells effectively. Herein, a redox‐responsive bispecific supramolecular nanomedicine based on the self‐assembly of a cyclic peptide, termed as C‐1, targeting both PLK1 and PLK4 as a potent anticancer agent is reported. C‐1 is a cyclic peptide in response to reducing agents such as glutathione (GSH), which is constructed by a combined approach of pharmacophore modeling, molecular docking, and reversible cyclization. After entering the cytosol of cancer cell, the disulfide linkage is reduced by intracellular GSH, with the resulting linear conformation self‐assembling into bispecific nanofibers. C‐1 can lead to apoptotic cell death by inducing caspase‐3 activation and PARP cleavage in HeLa cells. Moreover, it suppresses the growth of HeLa cells in cell assays, and inhibits the progression of HeLa cells‐induced xenografts in nude mice without inducing notable side effects. This work provides a successful example of developing the redox‐responsive bispecific nanomedicine for high‐efficacy and low‐toxic cancer therapy.  相似文献   

8.
DNA‐toxin anticancer drugs target nuclear DNA or its associated enzymes to elicit their pharmaceutical effects, but cancer cells have not only membrane‐associated but also many intracellular drug‐resistance mechanisms that limit their nuclear localization. Thus, delivering such drugs directly to the nucleus would bypass the drug‐resistance barriers. The cationic polymer poly(L ‐lysine) (PLL) is capable of nuclear localization and may be used as a drug carrier for nuclear drug delivery, but its cationic charges make it toxic and cause problems in in‐vivo applications. Herein, PLL is used to demonstrate a pH‐triggered charge‐reversal carrier to solve this problem. PLL's primary amines are amidized as acid‐labile β‐carboxylic amides (PLL/amide). The negatively charged PLL/amide has a very low toxicity and low interaction with cells and, therefore, may be used in vivo. But once in cancer cells' acidic lysosomes, the acid‐labile amides hydrolyze into primary amines. The regenerated PLL escapes from the lysosomes and traverses into the nucleus. A cancer‐cell targeted nuclear‐localization polymer–drug conjugate has, thereby, been developed by introducing folic‐acid targeting groups and an anticancer drug camptothecin (CPT) to PLL/amide (FA‐PLL/amide‐CPT). The conjugate efficiently enters folate‐receptor overexpressing cancer cells and traverses to their nuclei. The CPT conjugated to the carrier by intracellular cleavable disulfide bonds shows much improved cytotoxicity.  相似文献   

9.
The development of advanced gene/drug codelivery carriers with stimuli‐responsive release manner for complementary cancer therapy is desirable. In this study, novel disulfide‐bridged and doxorubicin (DOX)‐embedded degradable silica nanoparticles (DS‐DOX) with unique self‐destruction features are synthesized by a facile one‐pot method. In order to realize codelivery of genes and drugs, the surface of DS‐DOX nanoparticles is readily functionalized with the assembled polycation (CD‐PGEA), comprising one β‐cyclodextrin core and two ethanolamine‐functionalized poly(glycidyl methacrylate) arms, to achieve DS‐DOX‐PGEA. The redox‐responsive self‐destruction behavior of DS‐DOX imparts DS‐DOX‐PGEA with a better ability to release anticancer drug DOX, while the low‐toxic hydroxyl‐rich CD‐PGEA brushes can efficiently deliver genes for cancer treatment. Very interestingly, the degradation process of DS‐DOX starts from the outside, while the destruction of the degradable silica (DS) nanoparticles without DOX begins from the center of the nanoparticles. The embedded DOX inside the DS‐DOX nanoparticles can significantly influence the structures and facilitate the cellular uptake and the subsequent gene transfection. The as‐developed DS‐DOX‐PGEA nanostructure with coordinating biodegradability, stimuli‐responsiveness, and controlled release manner might be desirable gene/drug codelivery carriers for clinical cancer treatment.  相似文献   

10.
A sequentially responsive photosensitizer‐integrated biopolymer is developed for tumor‐specific photodynamic therapy, which is capable of forming long‐retained aggregates in situ inside tumor tissues. Specifically, the photosensitizer zinc phthalocyanine (ZnPc) is conjugated with polyethylene glycol (PEG) via pH‐labile maleic acid amide linker and then immobilized onto the hyaluronic acid (HA) chain using a redox‐cleavable disulfide linker. The PEG segment can enhance blood circulation of the molecular carrier after intravenous administration and be shed after reaching the acidic tumor microenvironment, allowing the remaining fragment to self‐assemble into large clusters in situ to avoid backward diffusion and improve tumor retention. This process is driven by hydrophobic interactions and does not require additional external actuation. The aggregates are then internalized by the tumor cells via HA‐facilitated endocytosis, and the high glutathione level in tumor cells eventually leads to the intracellular release of ZnPc to facilitate its interaction with the subcellular lipid structures. This tumor‐triggered morphology‐based delivery platform is constructed with clinically tested components and could potentially be applied to other hydrophobic therapeutics.  相似文献   

11.
In order to create advanced functional nanocarriers for efficient gene therapy, novel intracellular microenvironment‐sensitive fluorescence label‐free nanostructured dendrimer‐like silica hybrid nanocarriers are developed for traceable, effective, and safe gene delivery. Dendrimer‐like mesoporous silica nanoparticles (DMSNs) with center‐radial large pores are covalently modified with short polyethyleneimine (PEI) for efficient gene loading and binding. Autofluorescent and biodegradable PEI (AC‐PEI) responsive to the intracellular microenvironment are then coated on the gene‐loaded nanoparticles for inhibiting gene leakage from the carriers. Moreover, AC‐PEI coating not only endows intracellular microenvironment‐responsive gene release property, but also allows monitoring the gene delivery process in the absence of external labelling, owing to the pH‐ and GSH‐responsive autofluorescence and biodegradability of AC‐PEI. The resultant nanocarriers show high gene loading capacity, low cytotoxicity, stimuli‐responsive gene release, label‐free, and simultaneous fluorescence tracking, and high gene silencing capability. Thus, these developed nanocarriers hold substantial and promising potential as effective and safe gene‐delivery carriers for future scientific investigation and practical implications in gene therapy.  相似文献   

12.
Carboxymethyl cellulose (CMC) chains are functionalized with self‐complementary nucleic acid tethers and electron donor or electron acceptor functionalities. The polymer chains crosslinked by the self‐complementary duplex nucleic acids and the donor–acceptor complexes as bridging units, yield a stiff stimuli‐responsive hydrogel. Upon the oxidation of the electron donor units, the donor–acceptor bridging units are separated, leading to a hydrogel of lower stiffness. By the cyclic oxidation and reduction of the donor units, the hydrogel is reversibly transformed across low and high stiffness states. The controlled stiffness properties of the hydrogel are used to develop shape‐memory hydrogels. In addition, CMC hydrogels crosslinked by donor–acceptor complexes and K+‐stabilized G‐quadruplexes reveal stimuli‐responsive properties that exhibit dually triggered stiffness functions. While the hydrogel bridged by the two crosslinking motifs reveals high stiffness, the redox‐stimulated separation of the donor–acceptor complexes or the crown‐ether‐stimulated separation of the G‐quadruplex bridges yields two alternative hydrogels exhibiting low stiffness states. The control over the stiffness properties of the dually triggered hydrogel is used to develop shape‐memory hydrogels, where the donor–acceptor units or G‐quadruplex bridges act as “memories”, and to develop triggered self‐healing process of the hydrogel.  相似文献   

13.
To achieve on‐demand drug release, mesoporous silica nanocarriers as antitumor platforms generally need to be gated with stimuli‐responsive capping agents. Herein, a “smart” mesoporous nanocarrier that is gated by the drug itself through a pH‐sensitive dynamic benzoic–imine covalent bond is demonstrated. The new system, which tactfully bypasses the use of auxiliary capping agents, could also exhibit desirable drug release at tumor tissues/cells and enhanced tumor inhibition. Moreover, a facile dynamic PEGylation via benzoic–imine bond further endows the drug‐self‐gated nanocarrier with tumor extracellular pH‐triggered cell uptake and improves therapeutic efficiency in vivo. In short, the paradigm shift in capping agents here will simplify mesoporous nanomaterials as intelligent drug carriers for cancer therapy. Moreover, the self‐gated strategy in this work also shows general potential for self‐controlled delivery of natural biomolecules, for example, DNA/RNA, peptides, and proteins, due to their intrinsic amino groups.  相似文献   

14.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

15.
Stimuli‐responsive, drug‐loaded, DNA‐based nano‐ and micro‐capsules attract scientific interest as signal‐triggered carriers for controlled drug release. The methods to construct the nano‐/micro‐capsules involve i) the layer‐by‐layer deposition of signal‐reconfigurable DNA shells on drug‐loaded microparticles acting as templates, followed by dissolution of the core templates; ii) the assembly of three‐dimensional capsules composed of reconfigurable DNA origami units; and iii) the synthesis of stimuli‐responsive drug‐loaded capsules stabilized by DNA?polymer hydrogels. Triggers to unlock the nano‐/micro‐capsules include enzymes, pH, light, aptamer?ligand complexes, and redox agents. The capsules are loaded with fluorescent polymers, metal nanoparticles, proteins or semiconductor quantum dots as drug models, with anti‐cancer drugs, e.g., doxorubicin, or with antibodies inhibiting cellular networks or enzymes over‐expressed in cancer cells. The mechanisms for unlocking the nano‐/micro‐capsules and releasing the drugs are discussed, and the applications of the stimuli‐responsive nano‐/micro‐capsules as sense‐and‐treat systems are addressed. The scientific challenges and future perspectives of nano‐capsules and micro‐capsules in nanomedicine are highlighted.  相似文献   

16.
The successful development of highly sensitive, water‐compatible, nontoxic nanoprobes has allowed nanomaterials to be widely employed in various applications. The applicability of highly bright quantum dot (QD)‐based probes consisting of QDs on 120 nm silica nanoparticles (NPs) with silica shells is investigated. Their substantial merits, such as their brightness and biocompatibility, for effective bioimaging are demonstrated. Silica‐coated, QD‐embedded silica NPs (Si@QDs@Si NPs) containing QDs composed of CdSe@ZnS (core‐shell) are prepared to compare their structure‐based advantages over single QDs that have a similar quantum yield (QY). These Si@QDs@Si NPs exhibit approximately 200‐times stronger photoluminescence (PL) than single QDs. Cytotoxicity studies reveal that the Si@QDs@Si NPs are less toxic than equivalent numbers of silica‐free single quantum dots. The excellence of the Si@QDs@Si NPs with regard to in vivo applications is illustrated by significantly enhanced fluorescence signals from Si@QDs@Si‐NP‐tagged cells implanted in mice. Notably, a more advanced version of QD‐based silica NPs (Si@mQDs@Si NPs), containing multishell quantum dots (mQDs) composed of CdSe@CdS@ZnS, are prepared without significant loss of QY during surface modification. In addition, the Si@mQDs@Si NPs display a fivefold higher fluorescence activity than the Si@QDs@Si NPs. As few as 400 units of Si@mQDs@Si‐ NP‐internalized cells can be detected in the cell‐implanted mouse model.  相似文献   

17.
Superhydrophobic coatings that are also self‐healing have drawn much attention in recent years for improved durability in practical applications. Typically, the release of the self‐healing agents is triggered by temperature and moisture change. In this study, UV‐responsive microcapsules are successfully synthesized by Pickering emulsion polymerization using titania (TiO2) and silica (SiO2) nanoparticles as the Pickering agents to fabricate all‐water‐based self‐repairing, superhydrophobic coatings. These coatings are environmentally friendly and can be readily coated on various substrates. Compared to conventional superhydrophobic coatings, these coatings can regenerate superhydrophobicity and self‐cleaning ability under UV light, mimicking the outdoor environment, after they are mechanically damaged or contaminated with organics. They can maintain the superhydrophobicity after multiple cycles of accelerated weathering tests.  相似文献   

18.
Artificial cells or cell mimics have drawn significant attention in cell biology and material science in the last decade and its development will provide a powerful toolbox for studying the origin of life and pave the way for novel biomedical applications. Artificial cells and their subcompartments are typically constructed from a semipermeable membrane composed of liposomes, polymersomes, hydrogels, or simply aqueous droplets enclosing bioactive molecules to perform cellular‐mimicking activities such as compartmentalization, communication, metabolism, or reproduction. Despite the rapid progress, concerns regarding their physical stability (e.g., thermal or mechanical) and tunability in membrane permeability have significantly hindered artificial cells systems in real‐life applications. In addition, developing a facile and versatile system that can mimic multiple cellular tasks is advantageous. Here, an ultrastable, multifunctional and stimulus‐responsive artificial cell system is reported. Constructed from metal‐phenolic network membranes enclosing enzyme‐containing metal‐organic frameworks as organelles, the bionic cell system can mimic multiple cellular tasks including molecular transport regulation, cell metabolism, communication and programmed degradation, and significantly extends its stability range across various chemical and physical conditions. It is believed that the development of such responsive cell mimics will have significant potentials for studying cellular reactions and have future applications in biosensing and drug delivery.  相似文献   

19.
The development of efficient multiresponsive drug delivery systems (DDSs) to control drug release has been widely explored. Herein, a facile strategy is reported that enables the micelles of the selenium‐containing polymer with the drug to be encapsulated in metal‐organic frameworks (MOFs), which serves as multiresponsive drug release by employing the selenium‐containing polymers with redox‐triggered property and the MOFs with pH‐triggered property in DDS. In this case, the micelles of selenium‐containing polymers, as core easily disassembles in the presence of redox agents, can then release the drug in MOFs matrixes. The ZIF‐8 (one type of MOFs) crystal frameworks serving as shell can collapse only under low pH conditions, and the drug can be further released. In the presence of external redox agents as well as the pH stimuli, the prepared nanocomposite (P@ZIF‐8) drug system exhibits the capability of multiresponsive release of the doxorubicin (DOX) and possesses good selectivity in releasing the DOX under low pH conditions instead of normal pH conditions. In addition, the merits of P@ZIF‐8 such as good biocompatibility, multiresponsive release properties, and especially the selective release properties under different pH conditions make the materials highly promising candidates for the realization of controlled drug delivery in tumor tissue systems.  相似文献   

20.
Highly fluorescent and visible‐light‐responsive mesostructured organosilica films are successfully obtained by acidic sol–gel polycondensation of oligo(phenylenevinylene) (OPV)‐bridged organosilane and tetraethoxysilane precursors in the presence of a template surfactant. The OPV‐bridged organosilane precursors with different lateral alkoxy substituents, hexyloxy and 2‐ethylhexyloxy, and no substituent, are synthesized by Rh‐catalyzed silylation of corresponding aromatic iodides. From the organosilane precursors, three kinds of mesostructured OPV–silica hybrid films are prepared by spin‐casting using evaporation‐induced self‐assembly. UV‐vis absorption and fluorescence behavior of the OPV–silica hybrid films show that the optical properties and intermolecular interactions of the OPV moieties embedded within the organosilica frameworks strongly depend on the lateral alkoxy substituents in the precursors. The hexyloxy and 2‐ethylhexyloxy substituents prevent aggregation of the OPV units in the organosilica frameworks; this result leads to high fluorescence quantum yields of 0.48–0.61 and 0.63–0.66, respectively, while non‐substitution leads to lower fluorescence quantum yields of 0.25–0.34. Fluorescence decay profiles of the organosilica hybrid films also confirm a suppression of the aggregation of OPV moieties by the lateral substituents. These mesostructured organosilica films with significant optical properties in the visible‐light region are promising as a new class of phosphor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号