首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological composites display exceptional mechanical properties owing to a highly organized, heterogeneous architecture spanning several length scales. It is challenging to translate this ordered and multiscale structural organization in synthetic, bulk composites. Herein, a combination of top‐down and bottom‐up approach is demonstrated, to form a polymer‐ceramic composite by macroscopically aligning the self‐assembled nanostructure of polymerizable lyotropic liquid crystals via 3D printing. The polymer matrix is then uniformly reinforced with bone‐like apatite via in situ biomimetic mineralization. The combinatorial method enables the formation of macrosized, heterogeneous composites where the nanostructure and chemical composition is locally tuned over microscopic distances. This enables precise control over the mechanics in specific directions and regions, with a unique intrinsic–extrinsic toughening mechanism. As a proof‐of‐concept, the method is used to form large‐scale composites mimicking the local nanostructure, compositional gradients and directional mechanical properties of heterogeneous tissues like the bone‐cartilage interface, for mechanically stable osteochondral plugs. This work demonstrates the possibility to create hierarchical and complex structured composites using weak starting components, thus opening new routes for efficient synthesis of high‐performance materials ranging from biomaterials to structural nanocomposites.  相似文献   

2.
This article reviews recent literature on hierarchical thermoplastic-based composites that simultaneously incorporate carbon nanotubes (CNTs) and conventional microscale fibers, and discusses the structure–property relationships of the resulting hybrids. The mixing of multiple and multiscale constituents enables the preparation of materials with new or improved properties due to synergistic effects. By exploiting the outstanding mechanical, thermal and electrical properties of CNTs, a new generation of multifunctional high-performance composites suitable for a wide variety of applications can be developed.  相似文献   

3.
The interface between reinforcing fiber and matrix is a crucial element in composite performance. Homogeneous and interconnected carbon nanotubes (CNTs) were deposited onto the surface of carbon fibers to produce multiscale reinforcement by electrophoretic deposition (EPD). Single fiber tensile tests showed that the tensile strength and Weibull modulus of the resulting multiscale materials were increased by 16 and 41%, respectively. Compared with as-received carbon fibers, CNTs-deposited carbon fibers provided the decreased surface energy by 20% and the increased adhesion work by 22% using modified Wilhelmy method. Results from single fiber pull-out testing showed that a significant improvement (up to 68.8%) of interfacial shear strength was obtained for the composites containing by CNTs/Carbon fiber multiscale reinforcement. All results strongly suggest that EPD process can provide a feasible platform for improving interface properties of advanced composites.  相似文献   

4.
The DC conductivity and Hall effect studies were used to investigate the nature, type, and development of the charge carriers in conductive polymer composite containing PAN-based carbon fibers of different concentration. The dependence of the electrical conductivity on temperature is characterized by a two-stage electrical conduction process with a semiconducting type of behavior and two activation energies. It was found the measured Hall voltage varies linearly with Hall current with two different signs of slopes. This suggests that a composite of low fiber content is functioning as p-type material, and then changes to n-type with increasing the carbon fiber content more than 15 wt.%. The density of the charge carriers increases with carbon fiber content in a behavior similar to the electrical conductivity for all given composites, showing a percolation phenomenon. The calculated charge carriers density includes both the magnetostatic arising from the polycarbonate matrix and from the free charge carriers themselves. Considering the filled carbon fibers as a random semiconducting material, the results obtained for various composites were described in terms of the band structure model. Other approach of results analysis was based on the composite bulk morphology observed by the SEM microscopy.  相似文献   

5.
碳纤维增强水泥复合材料的电导性能及其应用   总被引:19,自引:2,他引:17       下载免费PDF全文
研究了碳纤维增强水泥复合材料的电导性能, 用扫描电子显微镜(SEM ) 观察了材料产生电导渗流时的显微结构, 讨论了纤维掺量和纤维长度对电导性能的影响以及受载过程中材料电导率的变化规律。结果表明, 适当控制碳纤维的尺寸、含量, 可以明显提高材料的电导性能; 材料结构中存在电导渗流现象, 渗流阈值随受载过程而变化; 碳纤维增强水泥复合材料能够作为本征机敏材料, 反应试件受载时的应力应变关系。  相似文献   

6.
A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were considered: “hierarchical tree” (bundles-of-bundles of fibers) and self-similar particle and fiber reinforced composite (in which reinforcements at each scale level represents composites in turn consisting of lower level reinforcements and matrix). For the case of the hierarchical tree (“bundle-of-bundles” material), it was observed that the increase in the amount of hierarchy levels leads to the lower strength of material. In the self-similar fiber reinforced matrix materials, as differed from the hierarchical trees, the damage resistance of the hierarchical materials increases with increasing the amount of hierarchy levels. The effect of mixed fiber and particle reinforcement on the damage resistance of the hierarchical composites is investigated as well.  相似文献   

7.
Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic‐thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge–CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber–epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid‐state fiber‐shaped supercapacitor and a fiber‐type lithium‐ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy‐storage textiles.  相似文献   

8.
The complex a.c. impedance of three different random metal-insulator composites near their percolation threshold has been studied. These three metal-insulator systems include different shapes of nickel particles (filamentary and nodular shapes) in a matrix of polypropylene and silver particles in the matrix of potassium chloride. By using different metal-insulator structures and phases it is possible to elucidate the effect of different metal particle shapes and types of insulator phase on the electrical properties of these composites near their percolation threshold. Electrical properties, including d.c. conductivity, a.c. conductance, capacitance and dielectric loss tangent, of these metal-insulator composites as a function of metal volume fraction and frequency (5 Hz to 13 MHz) are presented. The results are correlated with structural characterization of these composites and are used to examine the applicability of different electrical transport models on these composite materials. The effect of different metal particle shapes on the percolation threshold and the power-law dependent percolation phenomenon is also discussed.  相似文献   

9.
Nanocomposites containing four different polyamide 12 (PA12) types and three grades of multiwalled carbon nanotubes (MWNTs) were prepared via small-scale melt processing to study the effect of different MWNTs and the influence of polymer properties on the dispersion of the fillers and the electrical properties of the composites. Under the selected mixing conditions the lowest electrical percolation threshold of 0.7 wt.% was found for Nanocyl™ NC7000 in low viscous PA12. Moreover, big influences of the end group functionality (acid or amine excess) and the melt viscosity of the matrix were found. Composites of PA12 with acid excess showed lower percolation thresholds than those based on amine terminated materials. At constant end group ratio low viscous matrices resulted in lower percolation thresholds than high viscous materials. The best MWNT dispersion was obtained in both high viscous PA12 composites. In these systems the mixing speed was varied indicating an optimum concerning electrical conductivity at 150 rpm as compared to 50 and 250 rpm.  相似文献   

10.
There has been a great deal of effort focused on engineering polymer composites with hierarchical microstructures consisting of one or more ingredients that can be organized differently across multiple length scales. However, there are hierarchical microstructures that have evolved over eons in biological materials. These unique structure–property relationships may serve as templates for engineering hierarchically structured polymer composites with tailored properties. One such biological material is the Palmetto wood of South Carolina, which was successfully used as a protective structure during the Revolutionary and Civil Wars to absorb cannon shot. Through an assembly of microfibers into macrofibers embedded in a cellulose matrix, the Palmetto wood has optimized its ability to resist failure when subjected to extreme dynamic loading events, such as hurricanes. Understanding of the dynamic and static structure–property relationship in Palmetto wood can facilitate the development of new hierarchically structured polymer composites with increased resistance to failure. Therefore, the structure–property relationship in Palmetto wood has been studied using novel multiscale microstructural and mechanical characterization techniques. Models have been developed that indicate that the hierarchical structure of Palmetto wood obeys the linear Rule-of-Mixtures across multiple length scales. This understanding has led to the development of new polymer composite structures that exhibit properties similar to Palmetto wood using conventional laminated carbon fiber–epoxy composites and new polymer nanocomposites consisting of carbon nanofibers. The use of the nanofibers appears to enhance the interaction between the composite components in a manner similar to the interaction between fibers in the Palmetto wood that enables the laminated composite to behave more like the individual layers by resisting the tendency to delaminate and increasing the Weibull statistical parameters closer to those observed in Palmetto wood.  相似文献   

11.
炭黑/聚合物复合材料的研究进展   总被引:2,自引:0,他引:2  
综述了炭黑/聚合物复合材料的研究进展。该类复合材料主要是通过共混、接枝、沉积、聚合制备的。讨论了聚合物结构、分子量及表面张力对炭黑填充的聚合物及共混物的导电性和物理性质的影响,以及用不同聚合方法制备炭黑/聚合物复合材料。着重讨论了如何获得低渗流阈的炭黑填充的导电复合材料及制备聚合物为壳,炭黑为核的核壳材料。  相似文献   

12.
Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.  相似文献   

13.
The electrical conductivity and morphology of injection molded polypropylene based composites containing two conductive fillers, carbon black (CB) and carbon fibers (CF) were studied. Injection moldings containing both, CB and CF, where the content of each filler was above its own percolation threshold, resulted in similar or lower values of overall composite volume resistivity compared with the resistivity of systems filled only with CB at the corresponding content. However, the resistivity of two-filler systems is always higher than the resistivity of systems filled only with CF at the corresponding content. The morphology and fiber length analysis of the injection molded composites are quite intriguing. Fiber orientation in the injection molded two-filler systems was found to be almost perpendicular to the melt flow direction, with no significant skin-core fiber orientation patterns, contrary to the typically observed fiber orientation in injection molded fiber filled composites. Moreover, the CF breakage in the presence of the CB was found more intense than when just CF is used, resulting in shorter fibers with narrower length distributions. This unexpected fiber behavior is responsible for the unexpected electrical behavior. However, the coexistence of CB and CF electrically conductive networks, supporting each other, was confirmed, in spite of the mechanical disturbances caused by the presence of fibrilar and particulate fillers.  相似文献   

14.
碳黑/聚酯纤维非连续性导电行为研究   总被引:2,自引:0,他引:2  
以熔体纺丝方法制备了碳黑/聚酯(CB/PET)导电纤维,分析了偶联剂对CB/PET纤维渗流阈值和T_g的影响,研究了碳黑含量与CB/PET纤维热性能和导电性能的关系。结果表明碳黑经偶联剂处理后,CB/PET纤维的渗流阈值和T_g均有所降低;碳黑含量对CB/PET纤维的性能影响显著,即随碳黑含量增加,CB/PET纤维的正效温度系数效应向高温移动;当碳黑含量为11%时,CB/PET纤维表现为较明显的正效拉力系数效应。  相似文献   

15.
Carbon nanotubes (CNTs) demonstrate remarkable electrical, thermal, and mechanical properties, which allow a number of exciting potential applications. In this article, we review the most recent progress in research on the development of CNT–polymer composites, with particular attention to their mechanical and electrical (conductive) properties. Various functionalization and fabrication approaches and their role in the preparation of CNT–polymer composites with improved mechanical and electrical properties are discussed. We tabulate the most recent values of Young's modulus and electrical conductivities for various CNT–polymer composites and compare the effectiveness of different processing techniques. Finally, we give a future outlook for the development of CNT–polymer composites as potential alternative materials for various applications, including flexible electrodes in displays, electronic paper, antistatic coatings, bullet‐proof vests, protective clothing, and high‐performance composites for aircraft and automotive industries.  相似文献   

16.
Metal‐polymer composites can be used to synthesize material properties. A variety of interpenetrating phase composites have been produced by spontaneously infiltrating porous short‐fiber preforms with unsaturated polyester resin under vacuum conditions. Porous preforms are fabricated by compacting and sintering short 304 stainless steel fibers from cutting stainless steel fiber ropes. Tensile experiments are conducted, and fractographs are examined via scanning electron microscopy. The results reveal that the tensile strength, elongation at maximum stress, and elasticity modulus of the IPCs increase with the increasing fiber fractions and exhibit anisotropy in different directions. The tensile strength and elongation at maximum stress are significantly improved compared with the consistent preforms. A nonlinear elastic behavior and sawtooth‐like fluctuation during yield deformation are noted. Compared with the through‐thickness direction, a higher tensile strength and larger elongation at maximum stress are observed in the in‐plane direction. Finer‐diameter fibers can improve the strength and increase the elongation at maximum stress. The tensile fracture surfaces show a mixture of brittle and plastic fracture characteristics.
  相似文献   

17.
The mechanical and physical properties of materials change with time. This change can be due to the dissipative characteristic of materials like in viscoelastic bodies and/or due to hostile environmental conditions and electromagnetic fields. We study time-dependent response of active fiber reinforced polymer composites, where the polymer constituent undergoes different viscoelastic deformations at different temperatures, and the electro-mechanical and piezoelectric properties of the active fiber vary with temperatures. A micromechanical model is formulated for predicting effective time-dependent response in active fiber composites with thermal, electrical, and mechanical coupling effects. In this micromechanical model limited information on the local field variables in the fiber and matrix constituents can be incorporated in predicting overall performance of active composites. We compare the time-dependent response of active composites determined from the micromechanical model with those obtained by analyzing the composites with microstructural details. Finite element (FE) is used to analyze the composite with microstructural details which allows quantifying variations of field variables in the constituents of the active composites.  相似文献   

18.
CNTs/ UHMWPE composites with a two-dimensional conductive network   总被引:1,自引:0,他引:1  
A low percolation threshold can be achieved for the conductive polymer composites(CPC) materials having a segregated structure in which the conductive particles like carbon black (CB), carbon nanotubes (CNTs), etc. are only located on the interface of the polymer matrix particles instead of being randomly distributed in the whole system. Multiwalled carbon nanotubes (MWNTs) were experienced alcohol-assisted dispersion under ultrasonication and intense mechanical mixing, and only located on the interfaces of the ultrahigh molecular weight polyethylene (UHMWPE) matrix particles to form a segregated structure. The morphological observation and the critical exponent t value obtained from the classical threshold mechanism indicate that the MWNTs/UHMWPE composites form a 2-dimension conductive network, which leads to a very low percolation of 0.072vol%.  相似文献   

19.
Scrutiny into the composition of natural, or biological materials convincingly reveals that high material and structural efficiency can be attained, even with moderate-quality constituents, by hierarchical topologies, i.e., successively organized material levels or layers. The present study demonstrates that biologically inspired hierarchical designs can help improve the moderate properties of natural fiber polymer composites or biocomposites and allow them to compete with conventional materials for load-bearing applications. An overview of the mechanics concepts that allow hierarchical designs to achieve higher performance is presented, followed by observation and results from flexural tests on periodic and hierarchical cellular beams and plates made from industrial hemp fibers and unsaturated polyester resin biocomposites. The experimental data is shown to agree well with performance indices predicted by mechanics models. A procedure for the multi-scale integrated material/structural analysis of hierarchical cellular biocomposite components is presented and its advantages and limitations are discussed.  相似文献   

20.
Zirconia-tungsten composites have been obtained by the densification of ceramic-metal powders. The influence of the sintering conditions and the metal volume fraction on the morphology, the porosity, the linear shrinkage, the microhardness and on the linear expansion coefficient has been evidenced. Using a general effective medium equation to fit the electrical resistivity of the composites (1400°C-3h) a percolation threshold of 0.26 has been found. The distribution functions of relaxation times obtained from impedance spectroscopy measurements show that the higher is the thermal treatment the sharper are the peaks and the lower is the relaxation time p. The intragrain zirconia ionic conductivity is improved for high tungsten volume fractions below the percolation threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号