首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Owing to the growing demand for highly integrated electronics, anisotropic heat dissipation of thermal management material is a challenging and promising technique. Moreover, to satisfy the needs for advancing flexible and stretchable electronic devices, maintaining high thermal conductivity during the deformation of electronic materials is at issue. Presented here is an effective assembly technique to realize a continuous array of boron nitride (BN) nanosheets on tetrahedral structures, creating 3D thermal paths for anisotropic dissipation integrated with deformable electronics. The tetrahedral structures, with a fancy wavy shaped cross‐section, guarantee flexibility and stretchability, without the degradation of thermal conductivity during the deformation of the composite film. The structured BN layer in the composites induces a high thermal conductivity of 1.15 W m?1 K?1 in the through‐plane and 11.05 W m?1 K?1 in the in‐plane direction at the low BN fraction of 16 wt%, which represent 145% and 83% increases over the randomly mixing method, respectively. Furthermore, this structured BN composite maintains thermal dissipation property with 50% strain of the original length of composite. Various electronic device demonstrations provide exceptional heat dissipation capabilities, including thin film silicon transistor and light‐emitting diode on flexible and stretchable composite, respectively.  相似文献   

2.
Polymer‐based thermal interface materials (TIMs) with excellent thermal conductivity and electrical resistivity are in high demand in the electronics industry. In the past decade, thermally conductive fillers, such as boron nitride nanosheets (BNNS), were usually incorporated into the polymer‐based TIMs to improve their thermal conductivity for efficient heat management. However, the thermal performance of those composites means that they are still far from practical applications, mainly because of poor control over the 3D conductive network. In the present work, a high thermally conductive BNNS/epoxy composite is fabricated by building a nacre‐mimetic 3D conductive network within an epoxy resin matrix, realized by a unique bidirectional freezing technique. The as‐prepared composite exhibits a high thermal conductivity (6.07 W m?1 K?1) at 15 vol% BNNS loading, outstanding electrical resistivity, and thermal stability, making it attractive to electronic packaging applications. In addition, this research provides a promising strategy to achieve high thermal conductive polymer‐based TIMs by building efficient 3D conductive networks.  相似文献   

3.
Thermal conductivity of free‐standing reduced graphene oxide films subjected to a high‐temperature treatment of up to 1000 °C is investigated. It is found that the high‐temperature annealing dramatically increases the in‐plane thermal conductivity, K, of the films from ≈3 to ≈61 W m?1 K?1 at room temperature. The cross‐plane thermal conductivity, K, reveals an interesting opposite trend of decreasing to a very small value of ≈0.09 W m?1 K?1 in the reduced graphene oxide films annealed at 1000 °C. The obtained films demonstrate an exceptionally strong anisotropy of the thermal conductivity, K/K ≈ 675, which is substantially larger even than in the high‐quality graphite. The electrical resistivity of the annealed films reduces to 1–19 Ω □?1. The observed modifications of the in‐plane and cross‐plane thermal conductivity components resulting in an unusual K/K anisotropy are explained theoretically. The theoretical analysis suggests that K can reach as high as ≈500 W m?1 K?1 with the increase in the sp2 domain size and further reduction of the oxygen content. The strongly anisotropic heat conduction properties of these films can be useful for applications in thermal management.  相似文献   

4.
As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene–carbon fiber composite paper is fabricated by depositing graphene oxide into the carbon fiber precursor followed by carbonization. In this full‐carbon architecture, scaffold of one‐dimensional carbon fiber is employed as the structural component to reinforce the mechanical strength, while the hierarchically arranged two‐dimensional graphene in the framework provides a convenient pathway for in‐plane acoustic phonon transmission. The as‐obtained hierarchical carbon/carbon composite paper possesses ultra‐high in‐plane thermal conductivity of 977 W m?1 K?1 and favorable tensile strength of 15.3 MPa. The combined mechanical and thermal performances make the material highly desirable as lateral heat spreader for next‐generation commercial portable electronics.  相似文献   

5.
Polymer dielectrics find applications in modern electronic and electrical technologies due to their low density, durability, high dielectric breakdown strength, and design flexibility. However, they are not reliable at high temperatures due to their low mechanical integrity and thermal stability. Herein, a self‐assembled dielectric nanocomposite is reported, which integrates 1D polyaramid nanofibers and 2D boron nitride nanosheets through a vacuum‐assisted layer‐by‐layer infiltration process. The resulting nanocomposite exhibits hierarchical stacking between the 2D nanosheets and 1D nanofibers. Specifically, the 2D nanosheets provide a thermally conductive network while the 1D nanofibers provide mechanical flexibility and robustness through entangled nanofiber–nanosheet morphologies. Experiments and density functional theory show that the nanocomposites through thickness heat transfer processes are nearly identical to that of boron nitride due to synergistic stacking of polyaramid units onto boron nitride nanosheets through van der Waals interactions. The nanocomposite sheets outperform conventional dielectric polymers in terms of mechanical properties (about 4–20‐fold increase of stiffness), light weight (density ≈1.01 g cm?3), dielectric stability over a broad range of temperature (25–200 °C) and frequencies (103–106 Hz), good dielectric breakdown strength (≈292 MV m?1), and excellent thermal management capability (about 5–24 times higher thermal conductivity) such as fast heat dissipation.  相似文献   

6.
Solar steam generation is regarded as one of the most sustainable techniques for desalination and wastewater treatment. However, there has been a lack of scalable material systems with high efficiency under 1 Sun. A solar steam generation device is designed utilizing crossplane water transport in wood via nanoscale channels and the preferred thermal transport direction is decoupled to reduce the conductive heat loss. A high steam generation efficiency of 80% under 1 Sun and 89% under 10 Suns is achieved. Surprisingly, the crossplanes perpendicular to the mesoporous wood can provide rapid water transport via the pits and spirals. The cellulose nanofibers are circularly oriented around the pits and highly aligned along spirals to draw water across lumens. Meanwhile, the anisotropic thermal conduction of mesoporous wood is utilized, which can provide better insulation than widely used super‐thermal insulator Styrofoam (≈0.03 W m?1 K?1). The crossplane direction of wood exhibits a thermal conductivity of 0.11 W m?1 K?1. The anisotropic thermal conduction redirects the absorbed heat along the in‐plane direction while impeding the conductive heat loss to the water. The solar steam generation device is promising for cost‐effective and large‐scale application under ambient solar irradiance.  相似文献   

7.
Owing to the development of electronic devices moving toward high power density, miniaturization, and multifunction, research on thermal interface materials (TIMs) is become increasingly significant. Graphene is regarded as the most promising thermal management material owing to its ultrahigh in‐plane thermal conductivity. However, the fabrication of high‐quality vertical graphene (VG) arrays and their utilization in TIMs still remains a big challenge. In this study, a rational approach is developed for growing VG arrays using an alcohol‐based electric‐field‐assisted plasma enhanced chemical vapor deposition. Alcohol‐based carbon sources are used to produce hydroxyl radicals to increase the growth rate and reduce the formation of defects. A vertical electric field is used to align the graphene sheets. Using this method, high‐quality and vertically aligned graphene with a height of 18.7 µm is obtained under an electric field of 30 V cm?1. TIMs constructed with the VG arrays exhibit a high vertical thermal conductivity of 53.5 W m?1 K?1 and a low contact thermal resistance of 11.8 K mm2 W?1, indicating their significant potential for applications in heat dissipation technologies.  相似文献   

8.
P‐type polycrystalline SnSe and K0.01Sn0.99Se are prepared by combining mechanical alloying (MA) and spark plasma sintering (SPS). The highest ZT of ≈0.65 is obtained at 773 K for undoped SnSe by optimizing the MA time. To enhance the electrical transport properties of SnSe, K is selected as an effective dopant. It is found that the maximal power factor can be enhanced significantly from ≈280 μW m?1 K?2 for undoped SnSe to ≈350 μW m?1 K?2 for K‐doped SnSe. It is also observed that the thermal conductivity of polycrystalline SnSe can be enhanced if the SnSe powders are slightly oxidized. Surprisingly, after K doping, the absence of Sn oxides at grain boundaries and the presence of coherent nanoprecipitates in the SnSe matrix contribute to an impressively low lattice thermal conductivity of ≈0.20 W m?1 K?1 at 773 K along the sample section perpendicular to pressing direction of SPS. This extremely low lattice thermal conductivity coupled with the enhanced power factor results in a record high ZT of ≈1.1 at 773 K along this direction in polycrystalline SnSe.  相似文献   

9.
Fire retardant coatings have been proven effective at reducing the heat release rate (HRR) of structural materials during burning; yet effective methods for increasing the ignition temperature and delay time prior to burning are rarely reported. Herein, a strong, fire‐resistant wood structural material is developed by combining a densification treatment with an anisotropic thermally conductive flame‐retardant coating of hexagonal boron nitride (h‐BN) nanosheets to produce BN‐densified wood. The thermal management properties created by the BN coating provide fast, in‐plane thermal diffusion, slowing the conduction of heat through the densified wood, which improves the material's ignition properties. Compared with densified wood without the BN coating, a 41 °C enhancement in ignition temperature (Tig), a twofold increase in ignition delay time (tig), and a 25% decrease in the maximum HRR of BN‐densified wood can be achieved. As a proof of concept for scalability, the pieces of the BN‐densified wood are fabricated with a length larger than 25 cm, width greater than 15 cm, and thickness more than 7 mm. The improved thermal management, fire resistance, mechanical strength, and scalable production of BN‐densified wood position it as a promising structural material for safe and energy‐efficient buildings.  相似文献   

10.
Anisotropic heat spreaders (flexible graphite and continuous carbon fiber polymer-matrix composite) and isotropic heat spreaders (copper and aluminum) have been evaluated numerically in terms of thermal resistance. Anisotropic ones are attractive for their through-thickness thermal insulation ability. Flexible graphite is superior to carbon fiber composite in providing lower thermal resistance. Carbon fiber composite is advantageous in its superior through-thickness thermal insulation ability and its smaller critical thickness (the optimal thickness for maximizing heat spreading while minimizing thickness). The isotropic heat spreaders are superior to the anisotropic ones in providing low thermal resistance, provided that the thickness is large, but they do not have the through-thickness thermal insulation ability. A higher value of the in-plane thermal conductivity enhances the effectiveness of flexible graphite. As the heat source area decreases, the thermal resistance increases while the critical thickness decreases. For the same heat source area, a greater in-plane dimension of the heat source perpendicular to the intended heat spreading direction decreases the thermal resistance and critical thickness. Flexible graphite is comparatively more advantageous when the thickness is smaller and when the heat source area is larger. For the same thickness below 2?mm, flexible graphite with in-plane conductivity of 1500?W/(m?K) is superior to copper and that with in-plane conductivity of 600?W/(m?K) is superior to aluminum. The highest thermal conductance obtained is 6.1?×?104?W/(m2?K) when the thermal interfacial resistance is neglected and 5.1?×?104?W/(m2?K) when this resistance is included. The conductance increases with decreasing heat source area and with decreasing heat spreader length.  相似文献   

11.
The Joule heating properties of an ultralight nanocarbon aerogel are investigated with a view to potential applications as energy‐efficient, local gas heater, and other systems. Thermally reduced graphene oxide (rGO) aerogels (10 mg cm?3) with defined shape are produced via emulsion‐templating. Relevant material properties, including thermal conductivity, electrical conductivity and porosity, are assessed. Repeatable Joule heating up to 200 °C at comparatively low voltages (≈1 V) and electrical power inputs (≈2.5 W cm?3) is demonstrated. The steady‐state core and surface temperatures are measured, analyzed and compared to analogous two‐dimensional nanocarbon film heaters. The assessment of temperature uniformity suggests that heat losses are dominated by conductive and convective heat dissipation at the temperature range studied. The radial temperature gradient of an uninsulated, Joule‐heated sample is analyzed to estimate the aerogel's thermal conductivity (around 0.4 W m?1 K?1). Fast initial Joule heating kinetics and cooling rates (up to 10 K s?1) are exploited for rapid and repeatable temperature cycling, important for potential applications as local gas heaters, in catalysis, and for regenerable of solid adsorbents. These principles may be relevant to wide range of nanocarbon networks and applications.  相似文献   

12.
Thermoelectric Bi2Te3 alloy nanopowders with different morphologies were synthesized by hydrothermal processes with different surfactants. The nanopowders were hot-pressed into pellets, and their thermoelectric properties were investigated. The results show that the morphologies of the nanopowders have remarkable effects on the thermoelectric properties of the hot-pressed bulk pellets. A suitable microstructure of the bulk pellet prepared from flower-like nanosheets was found, having a lower electrical resistivity, larger Seebeck coefficient, and lower thermal conductivity, resulting in a high figure of merit ZT ≈ 1.16. The effects of the nanopowders with different morphologies on the microstructure and thermoelectric properties of hot-pressed bulk pellets are discussed.  相似文献   

13.
Ultrafast time‐domain thermoreflectance (TDTR) is utilized to extract the through‐plane thermal conductivity (Λ LSCO) of epitaxial La0.5Sr0.5CoO3?δ (LSCO) of varying thickness (<20 nm) on LaAlO3 and SrTiO3 substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room‐temperature Λ LSCO of LSCO on both substrates (1.7 W m?1 K?1) are nearly a factor of four lower than that of bulk single‐crystal LSCO (6.2 W m?1 K?1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m?1 K?1 for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass‐like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measured Λ LSCO is rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution to Λ LSCO along the through‐plane direction for these ultrathin LSCO films on insulating substrates.  相似文献   

14.
“Graphitic” (g)‐C3N4 with a layered structure has the potential of forming graphene‐like nanosheets with unusual physicochemical properties due to weak van der Waals forces between layers. Herein is shown that g‐C3N4 nanosheets with a thickness of around 2 nm can be easily obtained by a simple top‐down strategy, namely, thermal oxidation etching of bulk g‐C3N4 in air. Compared to the bulk g‐C3N4, the highly anisotropic 2D‐nanosheets possess a high specific surface area of 306 m2 g?1, a larger bandgap (by 0.2 eV), improved electron transport ability along the in‐plane direction, and increased lifetime of photoexcited charge carriers because of the quantum confinement effect. As a consequence, the photocatalytic activities of g‐C3N4 nanosheets have been remarkably improved in terms of ?OH radical generation and photocatalytic hydrogen evolution.  相似文献   

15.
Porous ultrathin 2D catalysts are attracting great attention in the field of electro/photocatalytic hydrogen evolution reaction (HER) and overall water splitting. Herein, a universal pH‐controlled wet‐chemical strategy is reported followed by thermal and phosphorization treatment to prepare large‐size, porous and ultrathin bimetallic phosphide (NiCoP) nanosheets, in which graphene oxide is adopted as a template to determine the size of products. The thickness of the resultant NiCoP nanosheets ranges from 3.5 to 12.8 nm via delicately adjusting pH from 7.8 to 8.5. The thickness‐dependent electrocatalytic performance is evidenced experimentally and explained by computational studies. The prepared large‐size ultrathin NiCoP nanosheets show excellent bifunctional electrocatalytic activity for overall water splitting, with low overpotentials of 34.3 mV for HER and 245.0 mV for oxygen evolution reaction, respectively, at 10 mA cm?2. Furthermore, the NiCoP nanosheets exhibit superior photocatalytic HER performance, achieving a high HER rate of 238.2 mmol h?1 g?1 in combination with commonly used photocatalyst CdS, which is far superior to that of Pt/CdS (81.7 mmol h?1 g?1). All these results demonstrate large‐size porous ultrathin NiCoP nanosheets as an efficient and multifunctional electro/photocatalyst for water splitting.  相似文献   

16.
Although quantum dots (QDs) show excellent advantages in flexible wavelength‐tuning and high color rendering capability in white light‐emitting diodes (WLEDs) lighting and display applications, the less‐than‐one quantum efficiency inevitably gives rise to a non‐negligible heat generation problem, which induces high‐temperature quenching issues of QDs and severely hinders their potential applications. Efficient heat dissipation for these nanoscale QDs is challenging since these nanoparticle “heat sources” are usually embedded in a low‐thermal conductivity polymer matrix. In this work, this problem is attempted by targeting cooling of the QDs in the silicone matrix by electrostatically bonding the hexagonal boron nitride (hBN) platelets onto QDs without sacrificing the optical performance of WLEDs. The red‐emissive QDs/hBN composites are mixed with yellow‐emissive phosphor to fabricate QDs/hBN‐WLEDs. Due to the effective heat transfer channels established by the QDs/hBN in the silicone, the heat could be dissipated efficiently to ambient air, and the working temperature of WLEDs is reduced by 22.7 °C at 300 mA. The QDs/hBN‐WLEDs still maintain a high luminous efficiency of 108.5 lm W?1 and a high color rendering index of Ra > 95, R9 > 90, showing that the present strategy can improve heat dissipation without sacrificing the optical performance.  相似文献   

17.
As the portable device hardware has been increasing at a noticeable rate, ultrathin thermal conducting materials (TCMs) with the combination of high thermal conductivity and excellent electromagnetic interface (EMI) shielding performance, which are used to efficiently dissipate heat and minimize EMI problems generated from electronic components (such as high speed processors), are urgently needed. In this work, graphene oxide (GO) films are fabricated by direct evaporation of GO suspension under mild heating, and ultrathin graphite‐like graphene films are produced by graphitizing GO films. Further investigation demonstrates that the resulting graphene film with only ≈8.4 μm in thickness not only possesses excellent EMI shielding effectiveness of ≈20 dB and high in‐plane thermal conductivity of ≈1100 W m‐1 K‐1, but also shows excellent mechanical flexibility and structure integrity during bending, indicating that the graphitization of GO film could be considered as a new alternative way to produce excellent TCMs with efficient EMI shielding.  相似文献   

18.
To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.  相似文献   

19.
Understanding the fundamentals of nanoscale heat propagation is crucial for next‐generation electronics. For instance, weak van der Waals bonds of layered materials are known to limit their thermal boundary conductance (TBC), presenting a heat dissipation bottleneck. Here, a new nondestructive method is presented to probe heat transport in nanoscale crystalline materials using time‐resolved X‐ray measurements of photoinduced thermal strain. This technique directly monitors time‐dependent temperature changes in the crystal and the subsequent relaxation across buried interfaces by measuring changes in the c‐axis lattice spacing after optical excitation. Films of five different layered transition metal dichalcogenides MoX2 [X = S, Se, and Te] and WX2 [X = S and Se] as well as graphite and a W‐doped alloy of MoTe2 are investigated. TBC values in the range 10–30 MW m?2 K?1 are found, on c‐plane sapphire substrates at room temperature. In conjunction with molecular dynamics simulations, it is shown that the high thermal resistances are a consequence of weak interfacial van der Waals bonding and low phonon irradiance. This work paves the way for an improved understanding of thermal bottlenecks in emerging 3D heterogeneously integrated technologies.  相似文献   

20.
Forced convective heat rejection from electro-optical components maintained at different maximum operating temperatures, 60/spl deg/C and 100/spl deg/C above ambient (25/spl deg/C), on the same vertically orientated single circuit board (either FR4 or copper clad FR4) was experimentally studied. Reynolds numbers ranged from 0-20 000 in which forced ambient air was passed in the horizontal direction parallel to the plane of the board in a wind tunnel. The effect of component proximity and orientation on maximum power dissipation was explored. Observed thermal behavior patterns included an increase in power dissipation with Reynolds number, an increase in power dissipation with component spacing, and in increase in power dissipation with circuit board thermal conductivity. A significant influence of component arrangement (on the same horizontal plane versus on the same vertical plane) and relative location of the hotter component on the power dissipated was also observed and was influenced by board conduction, thermal wake interactions and/or wake shedding. Results provide placement criteria needed for designers to optimally place optical and electrical components in close proximity to each other while still achieving maximum power dissipation within given thermal management constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号