首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The study focuses on hydrogen production from steam reforming of glycerol over nickel based catalyst promoted by zirconia and supported over ceria. Catalyst was prepared by the wet-impregnation method and characterized by BET surface area analysis, X-ray diffraction technique and scanning electron microscopy (SEM) analysis. The performance of the catalyst was evaluated in terms of hydrogen yield, selectivity and glycerol conversion at 700 °C in a tubular fixed bed reactor. The effect of glycerol concentration in feed, space time (W/FAO), temperature and time on stream (TOS) was analyzed for the catalyst Ni–ZrO2/CeO2 which showed the complete conversion of glycerol and high H2 yield that corresponds to 3.95 mol of H2 out of 7 mol. Thermodynamic analysis was also carried out using Aspen HYSYS for system having glycerol concentration 10 wt% and 20 wt% and experimental results were compared with thermodynamics. Kinetic study was carried out for the steam reforming of glycerol over Ni–ZrO2/CeO2 catalyst using the power law model. The values of activation energy and order of reaction were found to be 43.4 kJ/mol and 0.3 respectively.  相似文献   

2.
A series of nano-gold catalysts supported on binary oxides MOx–CeO2 (atomic ratio M/Ce = 1:1, M = Mn, Fe, Co, Ni) are prepared by deposition–precipitation (DP). An innovative and rather convenient ultrasonic pretreatment of the support is employed for Au/MnOx–CeO2 preparation. It is found that for preferential CO oxidation Au/MnOx–CeO2 is more active than Au/CeO2. Ultrasonic pretreatment of MnOx–CeO2 further promotes the performance of Au/MnOx–CeO2, with CO conversion increased by 24 % at 120 °C. Meanwhile, the selectivity of oxygen to CO2 is promoted in the whole temperature range, especially in 80–120 °C, the selectivity is increased by 15–21%. HR-TEM and XRD results indicate that ultrasonic pretreatment is favorable to the formation of much smaller gold nanoparticles (<5 nm). The characterization of XPS, UV–vis DRS, H2-TPR and CO-TPR confirms that the strong interaction between Au and the support effectively inhibits the dissociation and oxidation of H2 over the ultrasonically pretreated catalyst Au/MnOx–CeO2, making it highly selective to CO oxidation.  相似文献   

3.
Present study reports on high catalytic activity of CNTs-supported Ni catalyst (x% Ni-CNTs) synthesized by the homogeneous deposition–precipitation method, which was successfully applied for low-temperature reforming of organic compounds in bio-oil. The optimal Ni-loading content was about 15 wt%. The H2 yield over the 15 wt% Ni-CNTs catalyst reached about 92.5% at 550 °C. The influences of the reforming temperature (T), the molar ratio of steam to carbon fed (S/C) and the current (I) passing through the catalyst, on the reforming process of the bio-oil over the Ni-CNTs' catalysts were investigated using the stream as the carrier gas in the reforming reactor. The features of the Ni-CNTs' catalysts with different loading contents of Ni were investigated via XRD, XPS, TEM, ICP/AES, H2-TPD and the N2 adsorption–desorption isotherms. From these analyses, it was found that the uniform and narrow distribution with smaller Ni particle size as well as higher Ni dispersion was realized for the CNTs-supported Ni catalyst, leading to excellent low-temperature reforming of oxygenated organic compounds in bio-oil.  相似文献   

4.
In the present work, several carbon supported PtSn catalysts with different Pt/Sn atomic ratios were synthesized and characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Both the results of TEM and XRD showed that all in-house prepared carbon supported Pt and PtSn catalysts had nanosized particles with narrow size distribution. According to the primary analysis of XPS results, it was confirmed that the main part of Pt of the as-prepared catalysts is in metallic state while the main part of Sn is in oxidized state. The performances of single direct ethanol fuel cells were different from each other with different anode catalysts and at different temperatures. It was found that, the single DEFC employing Pt3Sn2/C showed better performance at 60 °C while the direct ethanol fuel cells with Pt2Sn1/C and Pt3Sn2/C exhibited similar performances at 75 °C. Furthermore, at 90 °C, Pt2Sn1/C was identified as a more suitable anode catalyst for direct ethanol fuel cells in terms of the fuel cell maximum power density. Surface oxygen-containing species, lattice parameters and ohmic effects, which are related to the Sn content, are thought as the main factors influencing the catalyst activity and consequently the performance of single direct ethanol fuel cells.  相似文献   

5.
This research is aimed to improve the utilization and activity of anodic alloy catalysts and thus to lower the contents of noble metals and the catalyst loading on anodes for ethanol electrooxidation. The DEFC anodic catalysts, Pt–Ru–Ni/C and Pt–Ru/C, were prepared by a chemical reduction method. Their performances were tested by using a glassy carbon working electrode and cyclic voltammetric curves, chronoamperometric curves and half cell measurement in a solution of 0.5 mol L−1 CH3CH2OH and 0.5 mol L−1 H2SO4. The composition of the Pt–Ru–Ni and Pt–Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face centered cubic structures and had smaller lattice parameters than a Pt-alone catalyst. Their particle sizes were small, about 4.5 nm. No significant differences in the ethanol electrooxidation on both electrodes were found using cyclic voltammetry, especially regarding the onset potential for ethanol electrooxidation. The electrochemically active specific areas of the Pt–Ru–Ni/C and Pt–Ru/C catalysts were almost the same. But, the catalytic activity of the Pt–Ru–Ni/C catalyst was higher for ethanol electrooxidation than that of the Pt–Ru/C catalyst. Their tolerance to CO formed as one of the intermediates of ethanol electrooxidation, was better than that of the Pt–Ru/C catalyst.  相似文献   

6.
Oxidative steam reforming of ethanol (OESR) was investigated over PtNi/CeO2SiO2 catalysts prepared from different cerium salt precursors. During stability tests performed at 500 °C, steam/ethanol ratio (S/E) of 4 and oxygen/ethanol ratio of 0.5 (O/E), the highest performance was recorded over the catalyst prepared form organic precursors. The most promising formulation was tested at different temperatures, S/E and O/E. Complete conversion was recorded during 100 h of the test at 600 °C, with a very low carbon formation rate (6.9·10−7 gcoke, oxidized·gcatalyst−1·gcarbon,fed−1·h−1). The increase of oxygen content in the reacting mixture from 5 to 7.5% had a beneficial effect on H2 yield, which rose of more than 20% after 100 h of test, and on the conversion of by-products. When steam/ethanol ratio grew from 4 to 6, a slightly lower performance improvement was observed. Therefore, the highest activity and stability during OESR over the PtNi/CeO2SiO2 catalyst prepared from organic salts was achieved at 600 °C, O/E = 0.75 and S/E = 6.  相似文献   

7.
Ni-based catalysts have been widely studied in reforming methane with carbon dioxide. However, Ni-based catalysts tends to form carbon deposition at low temperatures (≤600 °C), compared with high temperatures. In this paper, a series of Ni/SiO2-XG catalysts were prepared by the glycine-assisted incipient wetness impregnation method, in which X means the molar ratio of glycine to nitrate. XRD, H2-TPR, TEM and XPS results confirmed that the addition of glycine can increase Ni dispersion and enhance the metal-support interaction. When X ≥ 0.3, these catalysts have strong metal-support interaction and small Ni particle size. The Ni/SiO2-0.7G catalyst has the best catalytic performance in dry reforming of methane (DRM) test at 600 °C, and its CH4 conversion is 3.7 times that of Ni/SiO2-0G catalyst. After 20 h reaction under high GHSV (6 × 105 ml/gcat/h), the carbon deposition of Ni/SiO2-0.7G catalyst is obviously lower than that of Ni/SiO2-0G catalyst. Glycine-assisted impregnation method can enhance the metal-support interaction and decrease the metal particle size,which is a method to prepare highly dispersed and stable Ni-based catalyst.  相似文献   

8.
Effects of CeO2 and Fe2O3 on combustion reactivity of several fuels, including three ranks of coals, graphite and anthracite chars, were investigated using thermo-gravimetric analyzer. The results indicated that the combustion reactivity of all the samples except lignite was improved with CeO2 or Fe2O3 addition. It was interesting to note that the ignition temperatures of anthracite were decreased by 50 °C and 53 °C, respectively, with CeO2 and Fe2O3 addition and that its combustion rates were increased to 15.4%/min and 12.2%/min. Ignition temperatures of lignite with CeO2 and Fe2O3 addition were 250 °C and 226 °C, and the combustion rates were 12.8% and 19.3%/min, respectively. When compared with those of lignite without catalysts, no obvious catalytic effects of the two catalysts on its combustion reactivity were revealed. The results from the combustion of the three rank pulverized coals catalyzed by CeO2 and Fe2O3 indicated significant effects of the two catalysts on fixed carbon combustion. And it was found that the higher the fuel rank, the better the catalytic effect. The results of combustion from two kinds of anthracite chars showed obvious effects of anthracite pyrolysis catalyzed by CeO2 and Fe2O3 on its combustion reactivity.  相似文献   

9.
《Journal of power sources》2005,145(2):659-666
Oxidative steam reforming of ethanol for hydrogen production in order to feed a solid polymer fuel cell (SPFC) has been studied over several catalysts at on board conditions (a molar ratio of H2O/EtOH and of O2/EtOH equal to 1.6 and 0.68 respectively) and a reforming temperature between 923 and 1073 K. Two Ni (11 and 20 wt.%)/Al2O3 catalysts and five bimetallic catalysts, all of them supported on Al2O3, were tested. The bimetallic catalysts were Ni (approximately 20 wt.%) based catalysts doped with Cr (0.65 wt.%), Fe (0.6 wt.%), Zn (0.7 wt.%) or Cu (0.6 and 3.1 wt.%). The results in terms of H2 production and CO2/COx ratio obtained over Ni-based catalysts supported on Al2O3 are compared with those obtained over Ni–Cu/SiO2 and Rh/Al2O3 catalysts reported in our previous works. Tendencies of the product selectivities are analyzed in the light of the reaction network proposed.  相似文献   

10.
Ethanol steam reforming is a promising reaction which produces hydrogen from bio and synthetic ethanol. In this study, the nano-structured Ni-based bimetallic supported catalysts containing Cu, Co and Mg were synthesized through impregnation method and characterized by XRD, BET, SEM, TPR and TPD analysis. The prepared catalysts were tested in steam reforming of ethanol in the S/C = 6, GHSV of 20,000 mL/(gcat h) at the temperature range of 450–600 °C. Among the xNi/CeO2 (x = 10, 13, 15 wt%) catalyst, the sample containing 13 wt% Ni with surface area of 64 m2/g showed the best performance with 89% ethanol conversion and 71% H2 selectivity as well as low CO selectivity of 8% at 600 °C and The addition of Cu, Mg, and Co to catalyst structure were evaluated and it was found that the nature of second metal has a strong influence on the catalyst selectivity for H2 production. Considering to results of TPR analysis, the 13Ni–4Cu/CeO2 catalyst showed proper reduction which caused in better activity. On the other side based on TPD analysis, the more basic property of 13Ni–4Mg/CeO2 bimetallic catalyst provided a better condition to methane steam reforming, leading to lower CH4 selectivity and consequently more H2 production. The 13Ni–4Cu/CeO2 exhibited the highest activity and lowest selectivity towards ethanol conversion and CO production about 99% and 4%, while the 13Ni–4Mg/CeO2 catalyst possessed the highest H2 selectivity and lowest CH4 selectivity about 74% and 1% respectively at 600 °C. The Ni–Cu and Ni–Mg bimetallic catalysts shows good stability with time on stream.  相似文献   

11.
Al2O3–ZrO2 (AZ) xerogel supports prepared by a sol-gel method were calcined at various temperatures. Ni/Al2O3–ZrO2 (Ni/AZ) catalysts were then prepared by an impregnation method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AZ supports on the catalytic performance of Ni/AZ catalysts in the steam reforming of LNG was investigated. Crystalline phase of AZ supports was transformed in the sequence of amorphous γ-Al2O3 and amorphous ZrO2  θ-Al2O3 and tetragonal ZrO2   + α)-Al2O3 and (tetragonal + monoclinic) ZrO2  α-Al2O3 and (tetragonal + monoclinic) ZrO2 with increasing calcination temperature from 700 to 1300 °C. Nickel oxide species were strongly bound to γ-Al2O3 and θ-Al2O3 in the Ni/AZ catalysts through the formation of solid solution. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AZ supports. Nickel surface area of Ni/AZ catalysts was well correlated with catalytic performance of the catalysts. Among the catalysts tested, Ni/AZ1000 (nickel catalyst supported on AZ support that had been calcined at 1000 °C) with the highest nickel surface area showed the best catalytic performance. Well-developed and pure tetragonal phase of ZrO2 in the AZ1000 support played an important role in the adsorption of steam and the subsequent spillover of steam from the support to the active nickel.  相似文献   

12.
《Journal of power sources》2006,157(1):98-103
The electrochemical oxidation of ethanol on carbon supported Pt, PtRu and Pt3Sn catalysts was studied in acid solutions at room temperature and in direct ethanol fuel cells (DEFC) in the temperature range 70–100 °C. In all the experiments, an enhancement of the activity for the ethanol oxidation was observed on the binary catalysts. In acid solution the improvement at low current densities was higher on PtRu than on Pt3Sn. In DEFC tests, at 70 °C the cells with PtRu and Pt3Sn showed about the same performance, while for T > 70 °C the cells with Pt3Sn as anode material performed better than those with PtRu as anode material. The apparent activation energy for ethanol oxidation on PtRu catalyst was lower than on Pt3Sn, particularly at high cell potentials, i.e. at low current densities. At low temperatures and/or low current densities, the positive effect of Ru oxides on the bifunctional mechanism determined the enhancement of activity for the ethanol oxidation reaction, while at high temperatures the positive effect of Sn alloying (enlarged lattice parameter) on CH3CH2OH adsorption and C–C cleavage prevails.  相似文献   

13.
Running dry reforming of methane (DRM) reaction at low-temperature is highly regarded to increase thermal efficiency. However, the process requires a robust catalyst that has a strong ability to activate both CH4 and CO2 as well as strong resistance against deactivation at the reaction conditions. Thus, this paper examines the prospect of DRM reaction at low temperature (400–600 °C) over CeO2–MgO supported Nickel (Ni/CeO2–MgO) catalysts. The catalysts were synthesized and characterized by XRD, N2 adsorption/desorption, FE-SEM, H2-TPR, and TPD-CO2 methods. The results revealed that Ni/CeO2–MgO catalysts possess suitable BET specific surface, pore volume, reducibility and basic sites, typical of heterogeneous catalysts required for DRM reaction. Remarkably, the activity of the catalysts at lower temperature reaction indicates the workability of the catalysts to activate both CH4 and CO2 at 400 °C. Increasing Ni loading and reaction temperature has gradually increased CH4 conversion. 20 wt% Ni/CeO2–MgO catalyst, CH4 conversion reached 17% at 400 °C while at 900 °C it was 97.6% with considerable stability during the time on stream. Whereas, CO2 conversions were 18.4% and 98.9% at 400 °C and 900 °C, respectively. Additionally, a higher CO2 conversion was obtained over the catalysts with 15 wt% Ni content when the temperature was higher than 600 °C. This is because of the balance between a high number of Ni active sites and high basicity. The characterization of the used catalyst by TGA, FE-SEM and Raman Spectroscopy confirmed the presence of amorphous carbon at lower temperature reaction and carbon nanotubes at higher temperature.  相似文献   

14.
Fir wood wastes were used to produce crude bio-ethanol by two methods: simultaneous saccharification and fermentation (SSF) and acid hydrolysis followed by the fermentation of the acid hydrolyzate. The main components of crude bio-ethanol are ethanol and acetic acid. In addition, low concentrations of a wide range of alcohols, acids, esters, ethers and aldehydes are also present. Ethanol concentration is higher in the SSF process than in the acid hydrolysis: 43.69 g/L compared to 37.53 g/L, respectively. Opposite to ethanol concentration, the acetic acid concentration is higher in the acid hydrolysis process: 16.36 g/L compared to 10.24 g/L, respectively. The crude bio-ethanol was used to produce hydrogen by catalytic steam reforming. The tested catalysts were the common Ni/Al2O3 and two rare earth oxides promoted Ni catalysts: Ni/La2O3–Al2O3 and Ni/CeO2–Al2O3 prepared by successive wet impregnation. The characterization techniques revealed that the addition of rare earth oxides improves the Ni dispersion and the reducibility of the promoted catalysts. The best feed rate which assures the optimal ratio between conversion and catalyst deactivation is 0.8 mL/min bio-ethanol. The addition of extra oxide (La2O3 and CeO2) to the support improves the ethanol conversion especially at 250 °C, but no significant effect on the acetic acid conversion was observed. At 250 °C the ethanol conversion is almost 90% for Ni/La2O3–Al2O3 and Ni/CeO2–Al2O3, but the acetic acid conversion is below 30% for all catalysts. At 350 °C both ethanol and acetic acid present maximum conversion. At this temperature the best hydrogen production is obtained for Ni/La2O3–Al2O3 due to better ethanol conversion and better selectivity for hydrogen formation. At 350 °C the promoted catalysts are stable for 4 h time on stream, different degrees of deactivation being obtained at lower temperatures.  相似文献   

15.
This paper reports the study of new Ni/ZnO-based catalysts for hydrogen production from substoichiometric acetone steam reforming (ASR). The effect of CeO2 introduction is analyzed regarding the catalytic behavior and carbon deposits formation. ASR was studied at 600 °C using a steam/carbon ratio S/C = 1. Ni/xCeZnO (x = 10, 20, 30 CeO2 wt %) catalysts showed a better performance than the bare Ni/ZnO. Ni/xCeZnO generated a lower amount and less ordered carbon deposits than Ni/ZnO. The higher the CeO2 content in Ni/xCeZnO, the lower the amount of carbon deposits in the post-reaction catalyst. The highest H2 production under ASR at the experimental conditions used was achieved for the Ni/xCeZnO catalysts. In-situ DRIFTS-MS experiments under ESR conditions showed different reaction pathways over Ni/20CeZnO and Ni/ZnO catalysts.  相似文献   

16.
Sweet sorghum juice was fermented into ethanol using Saccharomyces cerevisiae (ATCC 24858). Factorial experimental design, regression analysis and response surface method were used to analyze the effects of the process parameters including juice solid concentration from 6.5 to 26% (by mass), yeast load from 0.5 g L−1 to 2 g L−1 and fermentation temperature from 30 °C to 40 °C on the ethanol yield, final ethanol concentration and fermentation kinetics. The fermentation temperature, which had no significant effect on the ethanol yield and final ethanol concentration, could be set at 35 °C to achieve the maximum fermentation rate. The yeast load, which had no significant effect on the final ethanol concentration and fermentation rate, could be set at 1 g L−1 to achieve the maximum ethanol yield. The juice solid concentration had significant inverse effects on the ethanol yield and final ethanol concentration but a slight effect on the fermentation rate. The raw juice at a solid concentration of 13% (by mass) could be directly used during fermentation. At the fermentation temperature of 35 °C, yeast solid concentration of 1 g L−1 and juice solid concentration of 13%, the predicted ethanol yield was 101.1% and the predicted final ethanol concentration was 49.48 g L−1 after 72 h fermentation. Under this fermentation condition, the modified Gompertz's equation could be used to predict the fermentation kinetics. The predicted maximum ethanol generation rate was 2.37 g L−1 h−1.  相似文献   

17.
《Journal of power sources》2005,145(2):178-187
In this paper we analyse the promises of homemade carbon materials of Sibunit family prepared through pyrolysis of natural gases on carbon black surfaces as supports for the anode catalysts of direct methanol fuel cells. Specific surface area (SBET) of the support is varied in the wide range from 6 to 415 m2 g−1 and the implications on the electrocatalytic activity are scrutinized. Sibunit supported PtRu (1:1) catalysts are prepared via chemical route and the preparation conditions are adjusted in such a way that the particle size is constant within ±1 nm in order to separate the influence of support on the (i) catalyst preparation and (ii) fuel cell performance. Comparison of the metal surface area measured by gas phase CO chemisorption and electrochemical CO stripping indicates close to 100% utilisation of nanoparticle surfaces for catalysts supported on low (22–72 m2 g−1) surface area Sibunit carbons. Mass activity and specific activity of PtRu anode catalysts change dramatically with SBET of the support, increasing with the decrease of the latter. 10%PtRu catalyst supported on Sibunit with specific surface area of 72 m2 g−1 shows mass specific activity exceeding that of commercial 20%PtRu/Vulcan XC-72 by nearly a factor of 3.  相似文献   

18.
Metal-support interaction and catalyst pretreatment are important for industrial catalysis. This work investigated the effect of supports (SiO2, CeO2, TiO2 and ZrO2) for Cu–Pd catalyst with high Cu/Pd ratio (Cu/Pd = 33.5) regarding catalyst cost, and the reduction temperatures of 350 °C and 550 °C were compared. The activity based on catalyst weight follows the order of Si > Ce > Zr > Ti when reduced at 350 °C. The reduction temperature leads to the surface reconstruction over the SiO2, CeO2 and TiO2 catalysts, while results in phase transition over Cu–Pd/ZrO2. The effect of reduction temperature on catalytic performance is prominent for the SiO2 and ZrO2 supported catalysts but not for the CeO2 and TiO2 ones. Among the investigated catalysts, Zr-350 exhibits the highest methanol yield. This work reveals the importance of the supports and pretreatment conditions on the physical-chemical properties and the catalytic performance of the Cu–Pd bimetallic catalysts.  相似文献   

19.
《Journal of power sources》2006,161(1):531-534
MgAl2O4 was synthesized through hydrolysis of metallic alkoxides of Mg2+ and Al3+. The formed spinel precursor phase was calcined at temperatures between 600 and 1100 °C, for 4 h. The spinel was utilized as a Ni/Pt catalyst support. The Ni/MgAl2O4 catalysts (15% Ni, w/w) containing small amounts of Pt were tested for methane steam reforming. The solids were analyzed by X-ray diffraction (XRD), temperature programmed reduction (TPR) with H2 and catalytic tests. The spinel phase was formed at temperatures above 700 °C. The addition of small amounts of Pt to Ni/MgAl2O4 promoted an increase in surface area. This probably caused the considerable increase in methane conversion.  相似文献   

20.
The effect of additives, such as an inorganic alkali and a nickel catalyst, on the hydrothermal process was examined to generate hydrogen from biomass with high selectivity at relatively low temperatures around 400 °C. At first, a cellulose sample as model biomass was subjected to the hydrothermal process at 400 °C under 25 MPa in the presence of an alkali (Na2CO3) and a nickel catalyst (Ni/SiO2). The combination of these two additives led not only to highly efficient generation of hydrogen but also to effective dissolution of CO2 into an alkaline liquid layer. Here the molar yields of gas products from the cellulose sample were compared with the equilibrium quantities obtained using a thermodynamics calculation software. Furthermore, the hydrothermal process of real biomass, such as wood chips, organic fertilizer and food waste, in the presence of both the two additives resulted in highly selective production of hydrogen even at 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号