首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative refractive index bands of 2.25–4.25 GHz and 4.3–4.6 GHz. The antenna is designed using a rectangular tuning fork structure to operate at WLAN and WiMAX bands. The antenna is printed on 30 × 39 × 1.27 mm3 Rogers RO3010 substrate, which shows wide impedance bandwidth of 0.75 GHz (2.2 to 2.95 GHz) with 2 dB realized gain at 2.4 GHz. After integrating metamaterial structure, the impedance bandwidth becomes 1.25 GHz (2.33 to 3.58 GHz) with 2.6 dB realized gain at 2.4 GHz. The antenna bandwidth and gain have been increased using developed quad SRR based metasurface by 500 MHz and 0.6 dBi respectively. Moreover, the proposed quad SRR loaded antenna can be used for 2.4 GHz WLAN bands and 2.5 GHz WiMAX applications. The contribution of this work is to develop a cost-effective inject printed metamaterial to enhance the impedance bandwidth and realized the gain of a WLAN/WiMAX antenna.  相似文献   

2.
This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at −10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications.  相似文献   

3.
In this paper, a low cost, highly efficient and low profile monopole antenna for ultra-wideband (UWB) applications is presented. A new inverted triangular-shape structure possessing meander lines is designed to achieve a wideband response and high efficiency. To design the proposed structure, three steps are utilized to achieve an UWB response. The bandwidth of the proposed antenna is improved with changing meander lines parameters, miniaturization of the ground width and optimization of the feeding line. The measured and simulated frequency band ranges from 3.2 to 12 GHz, while the radiation patterns are measured at 4, 5.3, 6 and 8 GHz frequency bands. The overall volume of the proposed antenna is 26 × 25 × 1.6 mm3 ; whereas the FR4 material is used as a substrate with a relative permittivity and loss tangent of 4.3 and 0.025, correspondingly. The peak gain of 4 dB is achieved with a radiation efficiency of 80 to 98% for the entire wideband. Design modelling of proposed antenna is performed in ANSYS HFSS 13 software. A decent consistency between the simulated and measured results is accomplished which shows that the proposed antenna is a potential candidate for the UWB applications.  相似文献   

4.
A compact wideband printed slot antenna, suitable for wireless local area network (WLAN) and satisfying the worldwide interoperability for microwave access (WiMAX) applications, is proposed here. The antenna is microstrip-fed and its structure is based on Koch fractal geometry where the resonance frequency of a conventional triangular slot antenna is lowered by applying Koch iterations. The antenna size inclusive of the ground plane is compact and has a wide operating bandwidth. The proposed second iteration Koch slot antenna operates from 2.33 to 6.19 GHz covering the 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The antenna exhibits omnidirectional radiation coverage with a gain better than 2.0 dBi in the entire operating band. Design equations for the proposed antenna are developed and their validity is confirmed on different substrates and for different slot sizes.  相似文献   

5.
This paper presents a compact Multiple Input Multiple Output (MIMO) antenna with WLAN band notch for Ultra-Wideband (UWB) applications. The antenna is designed on 0.8 mm thick low-cost FR-4 substrate having a compact size of 22 mm × 30 mm. The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer. The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure. The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports. A slot is etched in the radiating patch for WLAN band notch. The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz. The results show that the proposed antenna has a very good impedance bandwidth of |S11| < −10 dB within the frequency band from 3.1–14 GHz. A low mutual coupling of less than −23 dB is achieved within the entire UWB band. Furthermore, the antenna has a peak gain of 5.8 dB, low ECC < 0.002 and high Diversity Gain (DG > 9.98).  相似文献   

6.
In this paper, the design and experimental evaluation of a hexagonal-shaped coplanar waveguide (CPW)-feed frequency reconfigurable antenna is presented using flame retardant (FR)-4 substrate with size of 37 × 35 × 1.6 mm3. The antenna is made tunable to three different modes through the status of two pin diodes to operate in four distinct frequency bands, i.e., 2.45 GHz wireless fidelity (Wi-Fi) in MODE 1, 3.3 GHz (5G sub-6 GHz band) in MODE 2, 2.1 GHz (3G Long Term Evolution (LTE)-advanced) and 3.50 GHz Worldwide Interoperability for Microwave Access (WiMAX) in MODE 3. The optimization through simulation modeling shows that the proposed antenna can provide adequate gain (1.44~2.2 dB), sufficient bandwidth (200~920 MHz) and high radiation efficiency (80%~95%) in the four resonating frequency bands. Voltage standing wave ratio (VSWR) < 1.5 is achieved for all bands with properly matched characteristics of the antenna. To validate the simulation results, fabrication of the proposed optimized design is performed, and experimental analysis is found to be in a considerable amount of agreement. Due to its reasonably small size and support of multiple frequency bands operation, the proposed antenna can support portable devices for handheld 5G and Wireless LAN (WLAN) applications.  相似文献   

7.
A new sectorised antenna array (SAA) and measurement methodology are proposed for indoor ultrawideband (UWB) applications. The proposed SAA comprises of one centre element and six side elements. The one centre element and six side elements are arranged in a semi-spherical antenna array configuration. The measurement system and methodology for the coverage of the SAA are developed. The measured bandwidth of the SAA for voltage standing wave ratio (VSWR) <2 is 37.5%, ranging from 3.06 to 4.47 GHz. The boresight gain is more than 5.2 dBi across the impedance bandwidth. The proposed SAA is able to provide omni-directional pattern with an average gain of 5.2 dBi over the angles (0-3608). The discone reference antenna is used to measure the coverage of the proposed SAA. The proposed measurement study shows that the proposed SAA offers omni-directional coverage desirable in UWB indoor location and short-range communication systems.  相似文献   

8.
共面波导和分形结构结合应用,在展宽天线带宽方面具有独特优势.提出了一种新型古币形超宽带分形天线,采用共面波导馈电,并加载分形缝隙,天线的阻抗带宽大幅提高.给出了天线的表面电流、回波损耗、方向图和增益结果.对3阶分形天线进行了加工与测试,测试结果表明,天线带宽达到2.6~16 GHz,带宽比大于6:1.仿真结果与测试结果基本吻合,为超宽带小型化天线的设计提供了新的思路.  相似文献   

9.
In this paper, we present a novel modified printed monopole antenna (PMA) for ultra-wideband (UWB) applications. The proposed antenna consists of a truncated ground plane and radiating patch with two tapered steps, which provides wideband behaviour and relatively good matching. Moreover, the effects of a modified trapezoid-shaped slot inserted in the radiating patch, on the impedance matching and radiation behaviour is investigated. The antenna has a small area of 14 x 20 mm2 and offers an impedance bandwidth as high as 100% at a centre frequency of 7.45 GHz for S11 < -10 dB, which has a frequency bandwidth increment of 18% with respect to the previous similar antenna. Simulated and experimental results obtained for this antenna show that it exhibits good radiation behaviour within the UWB frequency range.  相似文献   

10.
提出一种应用于Wi-Fi/WiMAX的宽带高增益双极化阵列天线.它由+45°和-45°正交极化的两个天线组成。当频率为2.38~2.72 GHz时,天线的回波损耗大于-10 dB;端口1与端口2之间隔离度大于20 dB;端口1在2.45 GHz时获得最大增益为17.14 dBi,端口2在2.483 GHz时获得最大增益为17.15 dBi.仿真和测试很好相吻合,该双极化天线能满足Wi-Fi/WiMAX通信网络要求.  相似文献   

11.
A simple and compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole-like slot antenna is presented. The proposed antenna comprises a monopole-like slot and a CPW fork-shaped feeding structure, which is etched onto an FR4 printed circuit board (PCB) with an overall size of 26 mm x 29 mm x 1.5 mm. The simulation and experiment show that the proposed antenna achieves good impedance matching, consistent gain, stable radiation patterns and consistent group delay over an operating bandwidth of 2.7?12.4 GHz (128.5%). Furthermore, through adding two more grounded open-circuited stubs, the proposed antenna design features band-notched characteristic in the band of 5?6 GHz while maintaining the desirable performance over lower/upper UWB bands of 3.1?4.85 GHz/6.2?9.7 GHz.  相似文献   

12.
With the help of in-body antennas, the wireless communication among the implantable medical devices (IMDs) and exterior monitoring equipment, the telemetry system has brought us many benefits. Thus, a very thin-profile circularly polarized (CP) in-body antenna, functioning in ISM band at 2.45 GHz, is proposed. A tapered coplanar waveguide (CPW) method is used to excite the antenna. The radiator contains a pentagonal shape with five horizontal slits inside to obtain a circular polarization behavior. A bendable Roger Duroid RT5880 material (εr = 2.2, tanδ = 0.0009) with a typical 0.25 mm-thickness is used as a substrate. The proposed antenna has a total volume of 21 × 13 × 0.25 mm3. The antenna covers up a bandwidth of 2.38 to 2.53 GHz (150 MHz) in vacuum, while in skin tissue it covers 1.56 to 2.72 GHz (1.16 GHz) and in the muscle tissue covers 2.16 to 3.17 GHz (1.01 GHz). GHz). The flexion analysis in the x and y axes was also performed in simulation as the proposed antenna works with a wider bandwidth in the skin and muscle tissue. The simulation and the curved antenna measurements turned out to be in good agreement. The impedance bandwidth of −10 dB and the axis ratio bandwidth of 3 dB (AR) are measured on the skin and imitative gel of the pig at 27.78% and 35.5%, 13.5% and 4.9%, respectively, at a frequency of 2.45 GHz. The simulations revealed that the specific absorption rate (SAR) in the skin is 0.634 and 0.914 W/kg in muscle on 1g-tissue. The recommended SAR values are below the limits set by the federal communications commission (FCC). Finally, the proposed low-profile implantable antenna has achieved very compact size, flexibility, lower SAR values, high gain, higher impedance and axis ratio bandwidths in the skin and muscle tissues of the human body. This antenna is smaller in size and a good applicant for application in medical implants.  相似文献   

13.
Ultra-wideband (UWB) is highly preferred for short distance communication. As a result of this significance, this project targets the design of a compact UWB antennas. This paper describes a printed UWB rhombus-shaped antenna with a partial ground plane. To achieve wideband response, two stubs and a notch are incorporated at both sides of the rhombus design and ground plane respectively. To excite the antenna, a simple microstrip feed line is employed. The suggested antenna is built on a 1.6 mm thick FR4 substrate. The proposed design is very compact with overall electrical size of 0.18λ × 0.25λ (14 × 18 mm2). The rhombus shaped antenna covers frequency ranging from 3.5 to 11 GHz with 7.5 GHz impedance bandwidth. The proposed design simulated and measured bandwidths are 83.33% and 80%, respectively. Radiation pattern in terms of E-field and H-field are discussed at 4, 5.5 and 10 GHz respectively. The proposed design has 65% radiation efficiency and 1.5 dBi peak gain. The proposed design is simulated in CST (Computer Simulation Technology) simulator and the simulated design is fabricated for the measured results. The simulated and measured findings are in close resemblance. The obtained results confirm the application of the proposed design for the ultra-wide band applications.  相似文献   

14.
The performance of a triple-frequency meandered-strip monopole antenna for wireless application is presented. The proposed antenna comprises of a microstrip-fed monopole with an additional meandered strip and a ground plane with three protrudent strips on the opposite side of the substrate. By adding these shorted parasitic strips to this monopole, good impedance matching for multi-band application is obtained. Tuning effects of the additional shorted strips to the different resonant modes were examined and prototype of the proposed antenna had been constructed and experimentally studied. The measured results explore a broadband triple-frequency operation covering the required bandwidths of the PCS-1900/UMTS-2100 and the 2.4/5.2/5.8 GHz WLAN standards, a near-directive radiation pattern and a good antenna gain for this design.  相似文献   

15.
A triple-band Bluetooth (BT) and wireless local area network (WLAN) monopole antenna has been proposed based on concepts called capacitive loading/de-loading and inductive loading/de-loading. It has been demonstrated that BT and triple-band WLAN operations, including the BT 2.4 GHz (2.4-2.484 GHz), the WLAN IEEE 802.11 2.4 GHz (2.4-2.484 GHz), 5.2 GHz WLAN (5.15-5.35 GHz) and WLAN 5.8 GHz (5.725- 5.825 GHz) can be achieved by using the monopole antenna with an overall size 8.0 x 11.5 x 1.0 mm3, which is one of the most compact WLAN monopole antennas covering the three frequency bands.  相似文献   

16.
A low-profile, planar, circularly polarised monopole antenna with a shorting sleeve strip fed using a coplanar-waveguide transmission line for wireless communication in the digital communication system and the global positioning system bands is studied. By utilising the coupling effect between the monopole antenna and sleeve, two excited resonant modes, including the monopole and travelling-wave modes, cover the 1.57- and 1.8-GHz bands. Through modification with antennas of various geometrical parameters, the proposed antenna exhibits the wide bandwidth in the desired frequency bands, which has a bandwidth of 45% at 1.6%GHz for an input reflection coefficient of less than %10%dB. Meanwhile, the antenna has a 3-dB axial ratio bandwidth of 5%. Details of the design considerations for the proposed antennas are described, and the results of the antenna performances obtained are presented and discussed.  相似文献   

17.
DGEBA type epoxy resin, D.E.R. 331, was mixed with barium titanate, Y5V fillers, then cured with diaminodiphenyl methane (DDM). It was found that the dielectric constant at high frequency, 1 M-1 GHz, increases with the solid content of barium titanate. By adding 80 wt.% of Y5V fillers, the dielectric constant at 1 GHz can be increased from 3.2 of the sample without fillers to 13.1. A Lichtenecker's mixing model was proposed to describe the dielectric constant profile dependent on the filler loading. Furthermore, a model chip antenna was prepared and covered by an epoxy-barium titanate composite. The fundamental resonant mode of the antenna is excited at 2.452 GHz with a 10-dB return-loss bandwidth of about 191 MHz. It suggests that the antenna would be applied in 2.4 GHz ISM band for wireless communications.  相似文献   

18.
An optimised small-size printed tapered monopole antenna, PTMA, is designed for ultra-wideband applications. Optimisation is based on a real-coded version of Harik?s compact genetic algorithm, RCCGA. The optimisation algorithm, RCCGA has lowered the antenna area by more than 48% compared with the previous work for 3.1 to 11.7 GHz bandwidth operation. The time- and frequency-domain performance of the antenna are also described in simulations and measurements  相似文献   

19.
本文设计了一种新型超宽带陷波天线.在超宽带微带单极子天线馈线两侧加载高阻抗表面单元,获得WiMAX频段陷波.在高阻抗表面单元上蚀刻阿基米德螺旋结构缝隙,使得单元尺寸比传统结构减小了55.2%.为了进一步在WLAN和WiMAX频段实现双陷波,将非对称的新型高阻抗表面单元加载至微带单极子天线馈线双侧.加工制作天线实物并进行...  相似文献   

20.
A ultra-wideband (UWB) antenna with improved gain characteristics is proposed. With the improvements, it is discussed in terms of the band notch and enhanced radiation patterns. Shaping the return loss as an approach in order to achieve these characteristics is introduced and a multi-resonant dipole structure is designed and experimented in frequency and time domains. The proposed UWB antenna provides the band notch with a sharp slope and improved gain deviation on azimuth plane for the UWB communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号