首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑到混凝土细观非均质性的影响,从细观角度出发,认为混凝土是由骨料、界面过渡区、砂浆基质及初始缺陷组成的四相复合材料,建立了混凝土简支梁的二维随机骨料模型。采用耦合材料应变率效应的塑性损伤本构模型来描述砂浆基质及界面的力学性能;假定骨料不产生损伤破坏,设定为弹性。对无缺陷、2%和5%孔隙率的混凝土梁进行弯拉破坏数值研究,探讨初始缺陷及加载速率对混凝土梁弯拉破坏模式、弯拉强度及宏观应 力-应变关系的影响。数值结果表明:混凝土弯拉破坏模式及宏观力学性能具有明显的加载速率相关性;初始缺陷的存在对混凝土破坏模式及宏观力学性能具有很大的影响。  相似文献   

2.
考虑孔隙及微裂纹影响的混凝土宏观力学特性研究   总被引:1,自引:0,他引:1  
杜修力  金浏 《工程力学》2012,29(8):101-107
混凝土是一种典型的多孔介质材料,孔隙分布错综复杂,孔径尺寸跨越微观尺度和宏观尺度,对混凝土弹性模量及强度等力学参数产生巨大影响.认为混凝土是由骨料、孔隙及砂浆基质组成的三相复合材料,采用Monte Carlo 法将孔隙、微裂纹及微缺陷与骨料颗粒随机投放在砂浆基质中.根据三相球模型及中空圆柱形杆件模型得到含孔材料的有效力学性质,并推导得到含孔材料的等效本构模型.建立含孔隙混凝土试件的细观单元等效化力学模型,对二级配含孔隙混凝土试件在单轴拉伸及压缩条件下的反应进行了非线性分析.结果表明:孔隙、微裂纹的存在对混凝土宏观弹性模量、强度及残余强度等力学性质都有很大影响,在对混凝土宏观力学特性分析及研究混凝土损伤断裂时不应忽略其影响.  相似文献   

3.
考虑过渡区界面影响的混凝土宏观力学性质研究   总被引:1,自引:0,他引:1  
杜修力  金浏 《工程力学》2012,29(12):72-79
混凝土材料的宏观力学特性及破坏机理由其细观组分来决定,界面过渡区是影响混凝土断裂破坏路径及宏观力学特性的重要因素。认为界面过渡区是区别于远处砂浆基质的一层含较高孔隙率的近场砂浆材料,采用“两步等效法”得到了混凝土细观单元的等效本构关系模型。最后基于细观单元等效化方法分析了在单轴拉伸、单轴压缩及弯拉载荷条件下混凝土试件的破坏过程及宏观力学性质,探讨了界面过渡区对混凝土力学特性的影响,并与随机骨料模型分析结果进行了对比。结果表明:界面相的存在对混凝土的弹性模量、强度及残余强度等力学性质有很大影响,在对混凝土宏观力学特性及细观断裂破坏过程进行研究时不可忽略其影响。  相似文献   

4.
In this paper, the validity and performance of base force element method (BFEM) based on potential energy principle was studied by some numerical examples. And the BFEM on damage mechanics is used to analyze the size effect on tensile strength for recycled aggregate concrete (RAC) at meso-level. The recycled aggregate concrete is taken as five-phase composites consisting of natural coarse aggregate, new mortar, new interfacial transition zone (ITZ), old mortar and old ITZ on meso-level. The random aggregate model is used to simulate the meso-structure of recycled aggregate concrete. The size effects of mechanical properties of RAC under uniaxial tensile loading are simulated using the BFEM on damage mechanics. The simulation results agree with the test results. This analysis method is the new way for investigating fracture mechanism and numerical simulation of mechanical properties for RAC.  相似文献   

5.
In order to explore the links between the macroscopic and microstructural characteristics of concrete with admixtures of active mineral additions, four series of concrete prisms, of mortar matrix prisms and mortar-aggregate Interfacial Transition Zone (ITZ) are prepared and tested under monotonic and cyclic loads. Five static mechanical parameters (compressive and bending strength, fracture energy, elastic modulus, Poisson ratio) and bending fatigue performance (fatigue life, critical maximum displacement and strain, fatigue damage) of such materials are experimentally evaluated. The results show that degradation laws of concrete properties under both monotonic and cyclic loads vary with the different cohesive strength ratio and elastic modulus ratio of ITZ and mortar matrix. The single or double additions of ground slag and fly ash with optimized mass fractions remarkably enhance the static and bending fatigue properties as well as change the failure mechanisms of concrete.  相似文献   

6.
The interfacial-bonding, interfacial transition zone (ITZ), and porosity are regarded as the key factors affecting hardened concrete properties. The aim of this study was to experimentally improve the bonding between the rubber aggregate and cement paste by different methodologies including water washing, Na(OH) pre-treatment, and both cement paste and mortar pre-coating. All methods were assessed by determining mechanical and dynamic properties, then correlating this with ITZ porosity and interfacial gap void geometry, along with quantification of the fracture energy during micro crack propagation using fractal analysis. The results indicated that pre-coating the rubber by mortar gave the best results in terms of fracture toughness and energy absorption showing good agreement between observations made at both micro and macro scales.  相似文献   

7.
李冬  金浏  杜修力  杜敏 《工程力学》2017,34(6):64-72
混凝土尺寸效应及其宏观力学非线性根源于其材料细观组成的非均质性。结合混凝土细观结构形式,将混凝土看作由骨料颗粒、砂浆基质及界面过渡区组成的复合材料。采用双线性弹性损伤模型来描述砂浆基质及界面过渡区的力学行为,假定骨料颗粒为弹性体而不发生破坏,进而推导并获得了单轴拉伸条件下不同骨料颗粒级配混凝土断裂裂缝扩展路径长度及其抗拉强度的理论解。最后,对比了建立的理论公式结果与细观尺度数值模拟结果,验证了构建的关于裂缝长度及抗拉强度理论解的准确性和合理性。  相似文献   

8.
This contribution presents an effective and practical three dimensional (3D) numerical model to predict the behaviour of concrete matrix reinforced with sliding metallic fibers. Considering fiber-reinforced concrete (FRC) as two-phase composite, constitutive behaviour laws of plain concrete and sliding metallic fibers were described first and then they were combined according to anisotropic damage theory to predict the mechanical behaviour of FRC. The behaviour law used for the plain concrete is based on damage and plasticity theories able to manage localized crack opening in 3D. The constitutive law of the action of sliding metallic fibers in the matrix is based on the effective stress carried by the fibers. This effective stress depends on a damage parameter related to on one hand, on the content and mechanical properties of fibers and on the other hand, on the fiber–matrix bond which itself depends on the localized crack opening. The proposed model for FRC is easy to implement in most of the finite element codes based on displacement formulation; it uses only measurable parameters like Young’s modulus, tensile and compressive strengths, fracture energies and strains at peak stress in tension and compression. A comparison between the experimental data and model results has been also provided in this paper.  相似文献   

9.
A general theory for the inelasticity of concrete is proposed, the main constituents being a new, rate independent model of distributed damage for mortar and the application of mixture theories to account for the composite nature of concrete. The proposed theory of damage is capable of accommodating fully anisotropic elastic degradation, both in tension and in compression, in a manner which is ideally suited for computation. Mixture theories, on the other hand, are found to provide a simple yet effective tool for characterizing the values of the phase stresses that act on mortar and aggregate and which drive damage and plastic flow. This uneven distribution of stresses between mortar and aggregate is seen to lie at the foundation of effects such as the characteristic splitting failure modes in uniaxial compression and the unloading hysteretic loops that arise during cyclic loading. Further to furnishing useful insights into the physical mechanisms underlying the inelastic behavior of concrete, the proposed model provides a simple means of quantifying such behavior in a way which can be readily implemented in any standard finite element code. Possible generalizations of the theory are suggested. In particular, it is noted how rate and rheological effects can be incorporated into the proposed framework by extending it into the viscoplastic range and through the use of Eyring's theory of thermal activation.  相似文献   

10.
钢筋混凝土构件的宏观力学性能由其组分-钢筋和混凝土两部分的力学性能决定。结合混凝土细观结构形式,认为混凝土是由骨料颗粒、砂浆基质及界面过渡区组成的复合材料,假定钢筋与混凝土之间完好粘结,基于钢筋混凝土柱偏心受压试验,建立了钢筋混凝土柱偏心受压加载下力学特性及破坏行为研究的细观尺度力学分析模型。通过对混凝土方形和矩形试件进行受压力学特性模拟,采用反演法确定了界面的力学参数,进而模拟了钢筋混凝土柱偏心受压加载下的宏观力学性能。结果表明,相比于宏观尺度模型,细观数值分析模型能够充分体现材料的非均质性,能够较好的模拟试件的宏观力学性能,并且能够细致的描述裂缝发展及试件破坏过程,与试验结果吻合良好。该文建立的细观尺度分析模型与方法,为钢筋混凝土构件层次宏观力学非线性及其尺寸效应研究提供了理论支持。  相似文献   

11.
Concrete cover cracking induced by corrosion of steel reinforcement is a major influencing factor for durability and serviceability of reinforced concrete structures. Here in this study, the influence of concrete meso-structure on the failure pattern of concrete cover is accounted for. The concrete is assumed to be a three-phase composite composed of aggregate, mortar matrix and the interfacial transition zone (ITZ). And a concrete random aggregate structure is established for the study on the mechanical behavior of radial corrosion expansion. In the present simulations, the plasticity damaged model is used to describe the mechanical behavior of the mortar matrix and the ITZ, and it is assumed that the corrosion of steel reinforcement is uniform. The cracking of concrete cover due to steel reinforcement corrosion is numerically simulated. The simulation results have a good agreement with the available test data and they are between the two analytical results. The failure patterns obtained from the macro-scale homogeneous model and the meso-scale heterogeneous model are compared. Furthermore, the influences of ratio of cover thickness and reinforcement diameter (i.e. c/d), the location of the steel reinforcement (i.e., placed at the middle and corner zones) and the concrete tensile strength on the steel corrosion rate when the concrete cover cracks are investigated. Finally, some useful conclusions are drawn.  相似文献   

12.
The modeled recycled aggregate concrete (MRAC) which is an idealized model for the real recycled aggregate concrete (RAC) was used in this study. The MRCAs prepared with two types of old mortars were modified by an accelerated carbonation process. The effects of carbonation of MRCA on the micro-hardness of MRCA and the mechanical properties of MRAC were investigated. The results indicated that the micro-hardness of the old interfacial transition zone (ITZ) and the old mortar in the carbonated MRCAs was higher than that in the uncarbonated MRCAs, and the enhancement of the old ITZ was more significant than that of the old mortar. The compressive strength and modulus of MRACs increased when the carbonated MRCAs were utilized, and the improvement was more significant for MRAC prepared with a higher w/c. In addition, a numerical study was carried out and it showed that the improvement in strength by carbonation treatment was less obvious when the difference between the new and old mortar was larger.  相似文献   

13.
混凝土单轴抗压强度三维细观数值仿真   总被引:1,自引:0,他引:1  
该文在细观层面上将混凝土看作粗骨料、砂浆、界面、初始缺陷组成的四相复合材料, 给出了三维随机缺陷界面弹簧元模型模拟混凝土单轴抗压强度的数值方法。讨论了初始缺陷含量及其分布的确定方法以及界面细观计算参数的取值范围。数值模拟结果表明:混凝土的抗压强度随着初始缺陷含量的增加有大幅度降低;当界面初始缺陷含量为30%时, 混凝土抗压强度的计算值与试验值吻合较好。  相似文献   

14.
As previous studies of mortar and concrete with steel furnace slag (SFS) aggregates have shown increases or decreases in the bulk mechanical properties, this study investigated the microstructural cause of these opposing trends through characterization of the interfacial transition zone (ITZ) with quantitative image analysis of backscatter electron micrographs. Three SFS types – basic oxygen furnace (BOF), electric arc furnace (EAF), EAF/ladle metallurgy furnace (EAF/LMF) – were examined as aggregates in a portland cement mortar. The ITZ size for all SFS mortar mixtures was similar, with the ITZ of BOF and EAF/LMF being slightly more porous than mortar mixtures with EAF or dolomite. Microstructural examinations of the SFS particle revealed that BOF and EAF/LMF aggregates have different outer and interior compositions, with the outer composition consisting of a porous layer, which likely contributes to the reduced strength relative to EAF. The imaging results demonstrated that the type of SFS and its spatial composition greatly influences the bulk properties of mortar and concrete, mainly as a function of porosity content in the ITZ and the outer layer and interior porosity of the SFS aggregate.  相似文献   

15.
The random mesostructure of concrete has an important influence on the reliability and failure properties of the material. The objective of the proposed model is to create an efficient link between the mesostructure and the mechanical and damage behavior of concrete and related strain-softening materials. Three theoretical techniques comprise the model: cohesive debonding, the moving-window generalized method of cells, and a strain-softening finite element model. The model is calibrated with direct tension experiments geared towards isolating the mechanical behavior of the aggregate–mortar interface. The model makes a good prediction for the mechanical behavior of concrete in tension, particularly when randomness in the cohesive interface properties is taken into consideration.  相似文献   

16.
The properties of the interfacial transition zone (ITZ) of steel fiber and the bulk matrix were quantified using the backscattered electron imaging analysis (BSE-IA) and the scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), and their relationship with the mechanical properties of steel fiber-reinforced mortars was studied. The water and binder ratio (w/b) of mortar, the amount of silica fume and steel fiber were varied. From the quantitative analysis, a higher build-up of calcium hydroxide was found from the steel fiber’s interface up to 2 or 4 μm distance away and its build-up was reduced with the 10% cement replacement by silica fume. Porosity in the ITZ and bulk matrix decreased the fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar. However, its effect became marginal if a substantial amount of C–S–H or steel fibers appeared in the ITZ and bulk matrix, which increased the studied mechanical properties.  相似文献   

17.
A general theory of damage mechanics is applied to a fibre-reinforced ceramic matrix composite, SiC/MAS-L, in order to describe its non-linear mechanical behaviour up to failure. This study is limited to the case of quasi-monotonic loading at room temperature. The model, which uses an anisotropic damage theory previously applied to other composites, is a mesoscopic-scale model which has been developed using tension–compression tests on different stacking sequences and applies in the case of multiaxial loading. It includes the marked differences observed between mechanical behaviour in tension and in compression, and is also able to predict the failure values.  相似文献   

18.
Automatic image analysis and morphology of fibre reinforced concrete   总被引:1,自引:0,他引:1  
Automatic image analysis is an efficient tool to quantify the morphology of materials. Moreover, it can aid to understand their mechanical behaviour. Several applications of automatic methods are presented to investigate concrete reinforced by ribbon shaped amorphous cast iron fibres. Introducing ribbons into the plain matrix entrapped air voids. This affected the workability and, later on, the compressive strength of the fibre reinforced concrete (FRC). Both were improved by additions of superplasticizer in order to keep the water to cement ratio constant. The influence of the superplasticizer and fibre contents on the compactness of the FRC was characterized by the dimensional and the spatial distributions of the air voids. The orientations of fibres and microcracks were quantified by Fourier image transforms. Due to the casting procedure of the FRC, the fibres were located in “horizontal layers”, perpendicular to the casting axis. Whatever the direction of compression with respect to the layers of fibres, the microcrack network was getting more and more oriented in the direction of compression as stresses increased. The analysis of fibre and microcrack orientations suggests that, under uniaxial compression, the inelastic strain domain should be characterized by an anisotropic biaxial damage model, whose principal axes are the orthogonal and parallel directions to the layers of fibres.  相似文献   

19.
A 3D anisotropic continuum damage model is developed for the computational analysis of the elastic–brittle behaviour of fibre-reinforced composite. The damage model is based on a set of phenomenological failure criteria for fibre-reinforced composite, which can distinguish the matrix and fibre failure under tensile and compressive loading. The homogenized continuum theory is adopted for the anisotropic elastic damage constitutive model. The damage modes occurring in the longitudinal and transverse directions of a ply are represented by a damage vector. The elastic damage model is implemented in a computational finite element framework, which is capable of predicting initial failure, subsequent progressive damage up to final collapse. Crack band model and viscous regularization are applied to depress the convergence difficulties associated with strain softening behaviours. To verify the accuracy of the damage model, numerical analyses of open-hole laminates with different lay-up configurations under tension and compression were performed. The numerical predictions were compared with the experimental results, and satisfactory agreement was obtained.  相似文献   

20.
杜敏  金浏  李冬  杜修力 《工程力学》2017,34(9):54-63
混凝土材料宏观力学行为的非线性及尺寸效应根源于其内部组成的非均质性。考虑材料细观结构非均质性的影响,建立由骨料颗粒、砂浆基质和界面过渡区组成的混凝土细观尺度力学模型。对尺寸为150 mm、250 mm、350 mm和450 mm的混凝土立方体模型劈裂抗拉破坏行为进行细观数值模拟,探讨骨料粒径(最大粒径分别为:10 mm、20 mm、30 mm和40 mm)的影响机制,并与试验结果进行对比分析。结果表明:1) 混凝土材料的劈裂抗拉强度随着骨料粒径增大而略微降低,最大骨料粒径达到30 mm左右时,强度降低趋势变缓;2) 四种骨料粒径下混凝土立方体劈裂抗拉强度均存在尺寸效应现象,相比于大骨料试件,小骨料试件的破坏更具脆性,因而其尺寸效应更显著;3) 混凝土劈裂抗拉强度尺寸效应行为与 Ba?ant和Weibull提出的尺寸效应理论相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号