首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Differentiated macrophages have been proven to participate in the development of mesenchymal stem cells in different tissues. However, the regulatory processes remain obscure. Exosomes, which are key secretions of macrophages, have attracted increasing attention. Therefore, macrophage-derived exosomes may modulate the development of Bone marrow mesenchymal stem cells (BMMSCs). Different culture conditions were used to induce M1 polarization in THP1 cells. Subsequently, exosomes derived from unpolarized (M0) and polarized (M1) macrophages were isolated, BMMSCs were cultured with normal complete medium or inductive medium supplemented with M0 or M1 derived exosomes, and the osteogenic capacity of the BMMSCs was measured and analyzed. Finally, molecular mechanism associated with Akt and RUNX2 was investigated. Alizarin red staining and WB experiments showed that M1 macrophages could promote the osteogenic differentiation of BMMSCs better than M0 macrophages. Then, exosomes derived from M0 and M1 macrophages were successfully isolated and analyzed by electron microscopy and WB experiments. We concluded that media containing M1-derived exosomes promoted the osteogenic differentiation of BMMSCs better than media containing M0-derived exosomes. In addition, M1-derived exosomes could activate Akt and increase RUNX2 levels to promote osteogenesis. Our data demonstrated that exosomes derived from M1 macrophages induced osteogenesis by activating Akt and increasing RUNX2 level.  相似文献   

3.
Specific cell subpopulations identified as cancer stem cells (CSCs) can be found in basal cell carcinoma (BCC). Generally, CSCs have a marked trans-differentiation potential that could potentially be used in differentiation therapies. However, there are no studies regarding BCC CSCs multipotency. The aim of the study was to analyze the characteristic of CSCs of BCC with emphasis on their differentiation potential upon specific induction. Specific staining and cell morphology were used for differentiation confirmation, along with the expression analysis of osteogenic (ALP, BSP, Runx2, OCN, BMP2), chondrogenic (COL1 and COL2A1), adipogenic (PPAR-γ) and neurogenic (Nestin and MAP2) markers. BCC CSCs differentiated into osteogenic and chondrogenic lineages, as judged by staining and high expression of specific markers (from 2-to 92-fold higher upon induction). Concomitantly with differentiation, the levels of cancer stem cell markers decreased in the cultures. Adipo-differentiation and neuro-differentiation were unsuccessful. In conclusion, BCC CSCs exhibit the capacity to trans-differentiate, a characteristic that may potentially be useful in the development of new strategies for the treatment of aggressive BCCs.  相似文献   

4.
Pancreatic ductal adenocarcinoma (PDAC) is universally acknowledged as the cancer with the highest mortalityrate. Berberine has high medicinal value and has been used as an anti-cancer agent. Hence the purpose of this study was toinvestigate the anti-cancer effect of berberine in PDAC. Berberine was shown to have a selective anti-cancer effect onPDAC by MTT assay in vitro. Pancreatic cancer stem cells (PCSCs), regulated by epithelial–mesenchymal transition(EMT), could promote the proliferation of PDAC cells. However, berberine suppressed the proliferation and stemnessof PCSCs through immunofluorescence staining, stem cell sphere assays and so forth in vitro. In vivo, berberinereduced tumor size and decreased the expression levels of Ki67, a marker of cellular proliferation, in orthotopicpancreatic tumors. In addition, berberine inhibited the EMT signaling pathway by RT-PCR and Western blottingmethods both in vitro and in vivo. Our study indicates that berberine inhibits the proliferation of PDAC cells both invivo and in vitro. The mechanism of the anti-cancer effect of berberine likely involves the inhibition of EMT.Therefore, berberine may be a novel antineoplastic drug with clinical efficacy in PDAC.  相似文献   

5.
Background: Cardiomyocytes derived from human embryonic stem cells (hESCs) are regulated by complex and stringent gene networks during differentiation. Long non-coding RNAs (lncRNAs) exert critical epigenetic regulatory functions in multiple differentiation processes. However, the involvement of lncRNAs in the differentiation of hESCs into cardiomyocytes has not yet been fully elucidated. Here, we identified the key roles of ZFAS1 (lncRNA zinc finger antisense 1) in the differentiation of cardiomyocytes from hESCs. Methods: A model of cardiomyocyte differentiation from stem cells was established using the monolayer differentiation method, and the number of beating hESCs-derived cardiomyocytes was calculated. Gene expression was analyzed by quantitative real-time PCR (qRT-PCR). Immunofluorescence assays were performed to assess the expression of cardiac troponin T (cTnT) and α-actinin protein in cardiomyocytes. Results: qRT-PCR showed that ZFAS1 expression in the mesoderm was significantly higher than that in embryonic stem cells, cardiac progenitor cells, and cardiomyocytes. Knockdown of ZFAS1 inhibited cardiomyocyte differentiation from hESCs, which was characterized by reduced expression of the cardiac-specific markers cTnT, α-actinin, myosin heavy chain 6 (MYH6), and myosin heavy chain 7 (MYH7). In contrast, ZFAS1 overexpression remarkably increased the percentage of spontaneously beating cardiomyocytes. In terms of the mechanism, we found that ZFAS1 is an antisense lncRNA at the 5′ end of the protein-coding gene ZNFX1. Knockdown of ZFAS1 could increase the mRNA expression level of ZNFX1. Furthermore, qRT-PCR demonstrated that the silencing of ZNFX1 led to an increase in cardiac-specific markers that predicted the promotion of cardiomyocyte differentiation. Conclusion: Altogether, these data suggest that lncRNA-ZFAS1 is required for cardiac differentiation by functionally inhibiting the expression of ZNFX1, which may provide a reference for the treatment of heart disease to a certain extent.  相似文献   

6.
The main purpose of this article was to describe the morphology of mesenchymal stem cells (MSCs) differentiated in vitro towards osteogenic and chondrogenic lineages and to focus on the ultrastructural features associated with these processes. Human mononuclear cells (hMNC) were isolated, expanded, and analyzed for the expression of specific cell surface markers to demonstrate their stem cell characteristics. Human mononuclear cells were differentiated in vitro in an osteogenic and in a chondrogenic sense for 7, 14, 21, and 28 days. Subsequently, they were processed using electron microscopic analysis (FEISEM). Alizarin red and alcian blue staining were carried out to demonstrate the deposition of mineral salts and proteoglycans in the extracellular matrix. Undifferentiated MSCs showed a cell surface covered by filopodia and ondulopodia. During differentiation, the MSCs changed their shape from a round to a fibroblastic-like shape. At the end of the differentiation, several filaments with a parallel orientation in the osteogenic samples as well as a network organization in the chondrogenic samples were detected in the extracellular spaces. This study demonstrated that there are morphological features associated with the undifferentiated and differentiated states of the MSCs, which could be utilized as new parameters for identifying and classifying these cells.  相似文献   

7.
8.
9.
Exfoliated deciduous or an extracted healthy adult tooth can be used to harvest, process, and cryogenically preserve dental pulp stem cells. Future stem cell-based regenerative medicine methods could benefit significantly from these mesenchymal stem cells. Teeth serve as a substantial source of mesenchymal stem cells, otherwise disposed of as medical waste. Care should be taken to store this treasure trove of stem cells. Collective responsibility of patients, dentists, and physicians is necessary to ensure that this valuable resource is not wasted and that every possible dental pulp stem cell is available for use in the future. The dental pulp stem cells (DPSC) inside teeth represent a significant future source of stem cells for regenerative medicine procedures. This review describes the ontogeny, the laboratory processing and collection, and isolation methods of DPSC. This review also discusses currently available stem cell banking facilities and their potential use in regenerative medicine procedures in dental and general medical applications in the future.  相似文献   

10.
Human-induced neural stem cells (iNSCs) transplantation is a potential treatment of neurodegenerationdiseases. However, whether the reprogrammed cells have the same characterizations as human fetal neural stem cellsneeds further exploration. Here we isolated human fetal neural stem cells from aborted 12-week fetal brains andcompared with iNSCs reprogrammed from human peripheral blood mononuclear cells in gene expression, proliferationability, differentiation capacity, and the responses to tumor necrosis factor-α. We found that iNSCs and NSCs bothexpressed neural stem cell markers Nestin, SOX1, and SOX2. However, only iNSCs can be patterned into dopaminergicneurons and motor neurons. Furthermore, both iNSCs and NSCs can differentiate into oligodendrocyte progenitorcells. In addition, a low dose of tumor necrosis factor-α did not inhibit the proliferation and differentiation of iNSCsand NSCs. In conclusion, iNSCs have properties similar to, and even better than, fetal neural stem cells and may besuitable for disease modeling and transplantation.  相似文献   

11.
Human adipose derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with biomimetic materials. In this study, the chondrogenic potential of a porous gelatin based scaffold genipin (GNP) crosslinked was investigated in human mesenchymal stem cells obtained from adipose tissue. Cells were cultured up to 4 weeks on the scaffold and on monolayer, MTT assay was performed to evaluate cell viability, light, and transmission electron microscopy were carried out to demonstrate cell proliferation, scaffold adhesion, and cell colonization inside the porous architecture of the biomaterial. The expression of chondrogenic markers such as SOX9, collagen type II, aggregan, and versican was investigated by Real Time PCR. Results showed an high cell viability, adhesion, and colonization of the scaffold. Real Time PCR data demonstrated an upregulation of all the chondrogenic markers analyzed. In conclusion, 3D gelatin GNP crosslinked porous scaffold provides an improved environment for chondrogenic differentiation of stem cells compared with cell monolayer culture system. Microsc. Res. Tech. 77:928–934, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The pathogenesis of myelodysplastic syndrome (MDS) may be related to the abnormal expression of microRNAs(miRNAs), which could influence the differentiation capacity of mesenchymal stem cells (MSCs) towards adipogenic andosteogenic lineages. In this study, exosomes from bone marrow plasma were successfully extracted and identified.Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its0.52-fold downregulation in patients with MDS compared with controls (NOR) and was downregulated 0.55-fold inMDS-MSCs compared with NOR-MSCs. Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenicdifferentiation and decreased adipogenic differentiation in vitro, while inhibition of miR-103-3p showed the oppositeresults in NOR-MSCs. Thus, the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs, significantlyimpacting MDS-MSCs differentiation. The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation whileweakening lipid differentiation, thereby providing possible target for the treatment of MDS pathogenesis.  相似文献   

13.
Background: The immunomodulatory effects of mesenchymal stem cells (MSCs) and their exosomes have been receiving increasing attention. This study investigated the immunoregulatory effects of human amniotic mesenchymal stem cells (hAMSCs) and their exosomes on phytohemagglutinin (PHA)-induced peripheral blood mononuclear cells (PBMCs). Methods: The hAMSCs used in the experiment were identified by light microscopy and flow cytometry, and the differentiation ability of the cells was determined by Oil Red O and Alizarin Red staining. The expressions of transforming growth factor (TGF)-β, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2 (COX-2), hepatocyte growth factor (HGF), and interleukin (IL)-6 were detected by quantitative real-time polymerase chain reaction and western blotting. PBMCs, hAMSCs, and their exosomes were collected for in vitro group culture. Then the immunoregulatory ability of hAMSCs and their exosomes were analyzed by flow cytometry and Enzyme-linked immunosorbent assay. Results: The hAMSCs and exosomes were successfully extracted from the human amniotic membrane. TGF-β, IDO, COX-2, HGF, and IL-6 were significantly expressed in hAMSCs. In vitro co-culture showed that hAMSCs promoted the proliferation of Th2 cells in PHA-induced PBMCs, while hAMSCs and exosomes inhibited the secretion of TNF-α in PHA-induced PBMCs, and promoted the secretion of IL-4 and IL-10, and hAMSCs had more significant effects than exosomes. Conclusions: hAMSCs or exosomes could exert immunoregulatory effects on PHA-induced PBMCs by affecting Th2 cell proliferation and cytokine secretion.  相似文献   

14.
There are no studies on stem cells (SCs) and development and differentiation (DD) of the human adrenal glands. The SCs in DD of the adrenal glands were herein investigated histochemically and immunohistochemically in 18 human embryonic adrenal glands at gestational week (GW) 7–40. At 7 GW, the adrenal glands were present, and at 7 GW, numerous embryonic SCs (ESCs) are seen to create the adrenal cortex. The ESCs were composed exclusively of small cells with hyperchromatic nuclei without nucleoli. The ESCs were positive for neural cell adhesion molecule, KIT, neuron‐specific enolase, platelet‐derived growth factor receptor‐α, synaptophysin, and MET. They were negative for other SC antigens, including chromogranin, ErbB2, and bcl‐2. They were also negative for lineage antigens, including cytokeratin (CK)7, CK8, CK18, and CK19, carcinoembryonic antigen, carbohydrate antigen 19‐9, epithelial membrane antigen, HepPar1, mucin core apoprotein (MUC)1, MUC2, MUC5AC, and MUC6, and cluster differentiation (CD)3, CD45, CD20, CD34, and CD31. The Ki‐67 labeling index (LI) was high (Ki‐67 LI = around 20%). α‐Fetoprotein was positive in the ESCs and adrenal cells. The ESC was first seen in the periphery of the adrenal cortex at 7–10 GW. The ESC migrates into the inner part of the adrenal cortex. Huge islands of ESC were present near the adrenal, and they appeared to provide the ESC of the adrenal. At 16 GW, adrenal medulla appeared, and the adrenal ESCs were present in the periphery or the cortex, in the cortical parenchyma, corticomedullary junctions, and in the medulla. The adrenal essential architecture was established around 20 GW; however, there were still ESCs. At term, there are a few ESCs. These data suggest that the adrenal glands were created by ESCs. Microsc. Res. Tech., 78:59–64, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Nowadays, infertility is no longer considered as an unsolvable disorder due to progresses in germ cells derived from stem lineage with diverse origins. Technical and ethical challenges push researchers to investigate various tissue sources to approach more efficient gametes. The purpose of the current study is to investigate the efficacy of a combined medium, retinoic acid (RA) together with Bone Morphogenic Protein‐4 (BMP4), on differentiation of Bone Marrow Mesenchymal Stem Cells (BMMSCs) and adipose‐derived mesenchymal stem cells (ADMSCs) into germ cells. Murine MSCs were obtained from both Bone Marrow (BM) and Adipose Tissue (AT) samples and were analyzed for surface markers to get further verification of their nature. BMMSCs and ADMSCs were induced into osteogenic and adipogenic lineage cells respectively, to examine their multipotency. They were finally differentiated into germ cells using media enriched with BMP4 for 4 days followed by addition of RA for 7 days (11 days in total). Analyzing of differentiation potential of BMMSCs‐ and ADMSCs were performed via Immunofluorescence, Flowcytometry and Real time‐PCR techniques for germ cell‐specific markers (Mvh, Dazl, Stra8 and Scp3). Mesenchymal surface markers (CD90 and CD44) were expressed on both BMMSCs and ADMSCs, while endothelial and hematopoietic cell markers (CD31 and CD45) had no expression. Finally, all germ‐specific markers were expressed in both BM and AT. Although germ cells differentiated from ADMSCs showed faster growth and proliferation as well as easy collection, they significantly expressed germ‐specific markers lower than BMMSCs. This suggests stronger differentiation potential of murine BMMSCs than ADMSCs.  相似文献   

16.
The ability to form spheroids under non-adherent conditions is a well-known property of human mesenchymal stem cells (hMSCs), in addition to stemness and multilineage differentiation features. In the present study, we tested the ability of hMSCs isolated from the vascular wall (hVW-MSCs) to grow as spheres, and provide a characterization of this 3D model. hVW-MSCs were isolated from femoral arteries through enzymatic digestion. Spheres were obtained using ultra-low attachment and hanging drop methods. Immunophenotype and pluripotent genes (SOX-2, OCT-4, NANOG) were analyzed by immunocytochemistry and real-time PCR, respectively. Spheres histological and ultrastructural architecture were examined. Cell viability and proliferative capacity were measured using LIVE/DEATH assay and ki-67 proliferation marker. Metabolomic profile was obtained with liquid chromatography–mass spectrometry. In 2D, hVW-MSCs were spindle-shaped, expressed mesenchymal antigens, and displayed mesengenic potential. 3D cultures of hVW-MSCs were CD44+, CD105low, CD90low, exhibited a low propensity to enter the cell cycle as indicated by low percentage of ki-67 expression and accumulated intermediate metabolites pointing to slowed metabolism. The 3D model of hVW-MSCs exhibits stemness, dormancy and slow metabolism, typically observed in stem cell niches. This culture strategy can represent an accurate model to investigate hMSCs features for future clinical applications in the vascular field.  相似文献   

17.
The effects of human versus mouse EGF on cell growth and culture duration were studied to optimize a human limbal stem cells culture method for therapeutical autologous transplantation. Limbal cells were obtained by trypsin digestion and transferred to a culture medium. The time needed to reach full confluence in culture was determined. Specific antibodies to corneal stem cell marker (P63) versus corneal epithelial differentiation marker (K3) were used for histochemical determinations. A high proportion of P63 positive cells (85± 4.6%), and a correspondingly low proportion K3 positive cells (15 ± 3.8%) indicated that most cultured cells remained undifferentiated and were considered as stem cells (mean ± SE, n=10). Cultures reached full confluency after 17.3 ± 1.2 days when the medium was supplemented with human EGF, while 21.7 ± 1.5 days were needed when the medium was supplemented with mouse EGF. The results showed that limbal stem cells proliferate more easily and reach to full confluency in a shorter time if the medium is supplemented with hEGF rather than with mEGF.  相似文献   

18.
In the present work, a biomaterial (SBA-16/HA) based on the growth of hydroxyapatite (HA) particles within an organized silica structure SBA-16 (Santa Barbara Amorphous-16) was developed to evaluate its application to act as a porous microenvironment promoting attachment and viability of human dental pulp stem cells of healthy deciduous teeth (SHED). First, SHED were isolated and their phenotypes were evaluated by flow cytometry. The samples of SBA-16/HA were characterized by X-ray diffraction (XRD), small and wide angle X-ray scattering (SWAXS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive spectra detector (EDS). Afterward, cells were cultured in the eluates of the above-mentioned biomaterial aged for 24 hr, 7. and 14 days. Bio-Oss® and dentin particles are involved for comparison and cells are cultured in the eluates of these two materials also. Thiazolyl Blue Tetrazolium bromide assay-MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay) was used for the determination of cell viability. The results obtained by all aforementioned characterization methods of SBA-16/HA, revealed a uniform spherical mesoporous structure, an intrinsic characteristic of this material. This material displayed excellent biocompatibility on SHEDs, and even proliferative potential, indicating that SBA-16/HA could potentially serve as a suitable substrate for bone regeneration. Contrary to SBA-16/HA, dentin particles showed low cytotoxicity at all time points, compared to control and Bio-Oss®groups. Our results substantiate the idea that SBA-16/HA has a beneficial effect on SHEDs, thus paving the way toward developing new material for bone replacement.  相似文献   

19.
Fluorescence microscopy has long been used for qualitative characterization of various parameters such as subcellular distribution of proteins, lipids, nucleic acids, and ions. However, quantification of these parameters is complicated by a variety of optical, biological, and physical factors. In the last decade, the progress achieved with powerful softwares and digital image processing systems has facilitated the development of fluorescence immunohistochemistry (FIHC) into a widely used quantitative assay (quantitative-FIHC or Q-FIHC). We describe here a rapid and sensitive Q-FIHC assay based on the use of a laser scanning confocal microscope and advanced image analysis softwares (Zeiss semi automatic LSM 510 and fully automatic Axiovision 4.4) for the detection and quantification of fluorescent intensity in human corneal tissues and cells obtained from small clinical samples. We have used this methodology to characterize and quantify the gene expression profile of p63 and its DeltaNalpha isoform, specific markers of human limbal stem cells. The validity of this method was evaluated through comparative studies with conventional approaches suggesting no significant differences and providing an alternative technique to traditional methods. Since Q-FIHC requires at least 20-fold less cells than traditional techniques, we have adopted it as the main quality control for our limbal cultures destined to clinical application.  相似文献   

20.
Visualization and localization of specific DNA sequences were performed by fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM), and four-dimensional factor analysis of biomedical image sequences (4D-FAMIS). HeLa and SiHa cells containing, respectively 20–50 and 1–2 copies per cell of human papillomavirus (HPV) DNA type 18 and 16 integrated in cellular DNA were used as models. HPV-DNA was identified using DNA probes containing the whole genome of HPV-DNA type 18 or 16, and DNA–DNA hybrids were revealed by alkaline phosphatase and Fast Red. Cell nuclei were counterstained with thiazole orange (TO) or TOTO-iodide. 4D image sequences were obtained using successive dynamic or spectral sequences of images on different optical sections from CLSM. The location of fluorescent signals within the preparations was determined by FAMIS. This original method summarizes image sequences into a reduced number of images called factor images, and curves called factors. Factors estimate different individual physical behaviours in the sequence such as extinction velocity, spectral patterns and depth emission profiles. Factor images correspond to spatial distributions of the different factors. We distinguished between Fast Red and nucleus stainings in HPV-DNA hybridization signals by taking into account differences in their extinction velocities (fluorescence decay rate) or spectral patterns, and in their focus (depth emission profiles). In HeLa cells, factor images showed that Fast-Red-stained targets could be distinguished from nucleus stainings, and were located on different focal planes of the nuclei. In SiHa cells, 4D-FAMIS determined as few as 1–2 copies per cell of HPV-DNA type 16 located in continuous focal planes. Therefore, 4D-FAMIS, together with CLSM, made the detection and characterization of low copy numbers of genes in whole cells possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号