首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
针对铝基碳化硅切削加工中刀具易磨损、寿命低、切削难度大和加工成本高等问题,选用不同材料的硬质合金铣刀及金刚石铣刀进行切削加工实验,并利用扫描电镜和工具显微镜对高体积分数铝基碳化硅铣削时刀具磨损形态进行了分析研究.研究表明:硬质合金刀具前刀面和刃口磨损主要形式为粘结磨损和微崩刃,后刀面磨损主要为刻划磨损,而金刚石铣刀加工时刀具磨损很小;YG6X铣刀材料微观组织致密,抗磨损能力较强,宜粗加工时选用;金刚石刀体的硬度远大于SiC颗粒,且金刚石与工件的摩擦系数小,金刚石铣刀寿命远大于硬质合金铣刀,宜精加工时选用.  相似文献   

2.
对单相晶体结构和硬质合金的粘合特性的理论分析表明,对其进行延性超精密加工是可行的,并在普通加工中心上通过对切削力的监控,用立方氮化硼刀具实现了对硬质合金材料的延性超精密加工.研究结果显示,在用不同刀具进行的切削中,刀具的磨损都非常小;在对硬质合金的延性超精密加工中获得了纳米级表面粗糙度的平滑表面和层状切屑。  相似文献   

3.
Abstract

In the present investigation, machinability issues of zinc–aluminium (ZA43) alloy reinforced with silicon carbide particles (SiC) were evaluated. The fabrication of composite was done through liquid metallurgy technique. Metal matrix composite (MMC) was subjected to turning using conventional lathe with three grades of cutting tools, namely, uncoated carbide tool, coated carbide tool and ceramic tool. Surface roughness and tool wear were measured during the machining process. Results reveal that roughness increases with increase in the reinforcement concentration and particle size. Feed has direct influence on roughness, i.e. surface deteriorates with higher feeds. Depth of cut has very minimum effect on the surface roughness, while inverse effect of cutting speed on the roughness was observed (i.e. increase in the cutting speed leads to better finish on the specimen). Tool wear was studied during the investigation, and it was noticed that MMC with higher reinforcement concentration and particle size cause severe wear on the flank of the cutting tool. Increase in the cutting speed, feed and depth of cut also increases the flank wear on the tool. Out of all the three grades of tools, coated carbide tool outperformed uncoated carbide and ceramic tools.  相似文献   

4.
The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine, owing to hard ceramic particles in the matrix. In the milling process, the polycrystalline diamond (PCD) tools are used for machining these materials instead of carbide cutting tools, which significantly increase the machining cost. In this study, ultrasonic vibration method was applied for milling in-situ TiB2/7050Al metal matrix composites using a TiAlN coated carbide end milling tool. To completely understand the tool wear mechanism in ultrasonic-vibration assisted milling (UAM), the relative motion of the cutting tool and interaction of workpiecetool-chip contact interface was analyzed in detail. Additionally, a comparative experimental study with and without ultrasonic vibration was carried out to investigate the influences of ultrasonic vibration and cutting parameters on the cutting force, tool life and tool wear mechanism. The results show that the motion of the cutting tool relative to the chip changes periodically in the helical direction and the separation of tool and chip occurs in the transverse direction in one vibration period, in ultrasonic vibration assisted cutting. Large instantaneous acceleration can be obtained in axial ultrasonic vibration milling. The cutting force in axial direction is significantly reduced by 42%-57%, 40%-57% and 44%-54%, at different cutting speeds, feed rates and cutting depths, respectively, compared with that in conventional milling. Additionally, the tool life is prolonged approximately 2-5 times when the ultrasonic vibration method is applied. The tool wear pattern microcracks are only found in UAM. These might be of great importance for future research in order to understand the cutting mechanisms in UAM of in-situ TiB2/7050Al metal matrix composites.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00294-2  相似文献   

5.
An experimental study was conducted to examine the material properties and machinability of a silicon carbide (SiC)-filled epoxy conductive tooling system (RP4037 CAST-ITTM). Specifically, the effects of SiC filler concentration and machining process parameters (cutting speed and feed) on the physical and material properties, resultant cutting force, surface integrity, and tool wear were studied. Machinability evaluation was carried out using the end milling process. The study showed that an increase in filler concentration significantly increased the density, thermal conductivity, resultant machining forces, surface roughness of the machined surface, and tool wear. However, it had insignificant impact on the glass transition temperature, strength, or hardness. A decrease in material strength was observed with increasing cutting speed and feed. Increasing filler concentration was also found to degrade the machined surface morphology. Possible explanations for the observed effects are discussed.  相似文献   

6.
The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 µm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.  相似文献   

7.
In this article, response surface methodology has been used for finding the optimal machining parameters values for cutting force, surface roughness, and tool wear while milling aluminum hybrid composites. In order to perform the experiment, various machining parameters such as feed, cutting speed, depth of cut, and weight (wt) fraction of alumina (Al2O3) were planned based on face-centered, central composite design. Stir casting method is used to fabricate the composites with various wt fractions (5%, 10%, and 15%) of Al2O3. The multiple regression analysis is used to develop mathematical models, and the models are tested using analysis of variance (ANOVA). Evaluation on the effects and interactions of the machining parameters on the cutting force, surface roughness, and tool wear was carried out using ANOVA. The developed models were used for multiple-response optimization by desirability function approach to determine the optimum machining parameters. The optimum machining parameters obtained from the experimental results showed that lower cutting force, surface roughness, and tool wear can be obtained by employing the combination of higher cutting speed, low feed, lower depth of cut, and higher wt fraction of alumina when face milling hybrid composites using polycrystalline diamond insert.  相似文献   

8.
Short tool life and rapid tool wear in micromachining of hard-to-machine materials remain a barrier to the process being economically viable. In this study, standard procedures and conditions set by the ISO for tool life testing in milling were used to analyze the wear of tungsten carbide micro-end-milling tools through slot milling conducted on titanium alloy Ti-6 Al-4 V. Tool wear was characterized by flank wear rate,cutting-edge radius change, and tool volumetric change. The effect of machining parameters, such as cutting speed and feedrate, on tool wear was investigated with reference to surface roughness and geometric accuracy of the finished workpiece. Experimental data indicate different modes of tool wear throughout machining, where nonuniform flank wear and abrasive wear are the dominant wear modes. High cutting speed and low feedrate can reduce the tool wear rate and improve the tool life during micromachining.However, the low feedrate enhances the plowing effect on the cutting zone, resulting in reduced surface quality and leading to burr formation and premature tool failure. This study concludes with a proposal of tool rejection criteria for micro-milling of Ti-6 Al-4 V.  相似文献   

9.
Abstract

This paper presents a study of tool life and surface integrity while machining superalloy Inconel 718 using coated cemented carbide tools. In the machining of heat resistant superalloys used in aeronautical applications and classified as difficult‐to‐machine, tool life is an important parameter in evaluating the performance of the cutting tools. Surface quality of the workpiece is one of the important criteria in determining tool life. Our tests have been done under various combinations of speed, feed rate, and depth of cut to verify the change in surface roughness due to increasing tool wear. The behavior of the uncoated, TiN, and TiCN layers using various cutting conditions was analyzed. At the end, a choice of coating and optimization of the cutting conditions has been proposed.  相似文献   

10.
This study aims to investigate surface integrity in groove milling of Hastelloy-C276 using coated carbide end mills under the application of water-based fluid coolant using different cutting parameters. Surface integrity was assessed by measuring surface roughness, using focus variation microscope, and investigating surface defects, using scanning electron microscope. Micro-chips re-deposition and long grooves dominated the machined surface at low cutting speed (24–50 m/min). While cracked and fractured re-deposited materials, grooves, large debris, and plastic flow dominated the machined surface at high cutting speed (70–120 m/min), consequently surface roughness increased with cutting speed. Nucleated cavities appeared at all cutting speeds but with different densities. Shallow depth of cut at low cutting speed gave negative effect on surface roughness due to the effect of the hardened layer. Overall, the best surface finish, with average roughness below 50 nm and minimum surface abuse, was obtained in the speed range of 24–50 m/min at feed rate of 1 µm/tooth and depth of cut deeper than 0.1 mm.  相似文献   

11.
To reduce the use of cutting fluids in machining operations is a goal that has been searched in the industry due to environmental and human health problems that the cutting fluids cause. However, cutting fluids still promote the longer life of the cutting tool for many machining operations. This is the case of Ti6Al4V titanium milling operation using coated cemented carbide inserts. Therefore, the aim of this work is to study the feasible cutting conditions for use of minimal quantity of fluid (MQF) technique, i.e., conditions that make the tool life in MQF technique closer or higher than those obtained with the cutting without lubrication/cooling and cutting fluid jet without giving up productivity and the average roughness of the parts in the process. To achieve these objectives, several trials at Ti6Al4V end milling were performed by varying the cutting speed and feed rate with MQF application technique using vegetable cutting fluid compared with no lubrication/cooling and cutting with jet fluid to 8% aqueous emulsion. The main conclusion from this study was that the application of the MQF technique in Ti6Al4V end milling process increases the tool life and productivity and reduces the average surface roughness, while maintaining the same cutting conditions originally proposed in machining. Finally, microstructural analysis by scanning electron microscope (SEM) and energy dispersive spectrometry (EDS) was performed from cutting tools, and the main wear mechanisms when varying the lubrication/cooling systems employed were observed.  相似文献   

12.
In this paper, experimental investigations are carried out by end milling process on hardened tool steel, Impax Hi Hard (Hardness 55 HRC) a newly developed tool steel material used by tool and die making industries. Experiments are performed with an aim to study performance investigations of machining parameters such as cutting speed, feed, depth of cut and width of cut with consideration of multiple responses viz. volume of material removed, tool wear, tool life and surface finish to evaluate the performance of PVD coated carbide inserts and ball end mill cutters. It has been observed through scanning electron microscope, X-ray diffraction technique (EDX) that chipping and adhesion are active tool wear mechanisms and saw-toothed chips are formed while machining of Impax Hi Hard steel. It is also noticed out that tool life is not enhanced while machining with minimum quantity lubricant than dry machining. From the investigations, it is observed that hard machining can be considered as an alternative to grinding and EDM, traditional methods of machining difficult-to-machine materials i.e. hardened steel with hardness greater than 50 HRC with a scope of improved productivity, increased flexibility, decreased capital expenses and reduced environmental waste.  相似文献   

13.
Monitoring the condition of the cutting tool in any machining operation is very important since it will affect the workpiece quality and an unexpected tool failure may damage the tool, workpiece and sometimes the machine tool itself. Advanced manufacturing demands an optimal machining process. Many problems that affect optimization are related to the diminished machine performance caused by worn out tools. One of the most promising tool monitoring techniques is based on the analysis of Acoustic Emission (AE) signals. The generation of the AE signals directly in the cutting zone makes them very sensitive to changes in the cutting process. Various approaches have been taken to monitor progressive tool wear, tool breakage, failure and chip segmentation while supervising these AE signals. In this paper, AE analysis is applied for tool wear monitoring in face milling operations. Experiments have been conducted on En-8 steel using uncoated carbide inserts in the cutter. The studies have been carried out with one, two and three inserts in the cutter under given cutting conditions. The AE signal analysis was carried out by considering signal parameters such as ring down count and RMS voltage. The results show that AE can be effectively used to monitor tool wear in face milling operation.  相似文献   

14.
Machining is one of the important processing operations which new materials such as Metal Matrix Composites (MMC's) need to undergo to make these materials suitable for an industrial application. Looking at the projected widespread use of these materials, short life of stationary carbide tools and difficulties in the intermittent machining of these materials with PCD/CBN tools, the concept of rotary tool envisioned. Two force components viz. cutting and thrust were measured during the machining of Al/SiCp composites. Experiments were designed using Taguchi methods. Various factors and their interactions influencing the magnitude of forces were analyzed. Statistical models were proposed to estimate the magnitude of forces using the process, tool and work material dependent parameters. Magnitude offerees was found to be significantly influenced not only by the process and tool dependent parameters but also by the material dependent parameter.  相似文献   

15.
ABSTRACT

Hybrid Metal Matrix Composites (MMCs) are a new class of composites, formed by a combination of the metal matrix and more than one type of reinforcement having different properties. Machining of MMCs is a difficult task because of its heterogeneity and abrasive nature of reinforcement, which results in excessive tool wear and inferior surface finish. This paper investigates experimentally the addition of graphite (Gr) on cutting force, surface roughness and tool wear while milling Al/15Al2O3 and Al/15Al2O3/5Gr composites at different cutting conditions using tungsten carbide (WC) and polycrystalline diamond (PCD) insert. The result reveals that feed has a major contribution on cutting force and tool wear, whereas the machined surface roughness was found to be more sensitive to speed for both composite materials. The incorporation of graphite reduces the coefficient of friction between the tool–workpiece interfaces, thereby reducing the cutting force and tool wear for hybrid composites. The surface morphology and worn tool are analyzed using scanning electron microscope (SEM). The surface damage due to machining extends up to 200 µm for Al/15Al2O3/5Gr composites, which is beyond 250 µm for Al/15Al2O3 composites.  相似文献   

16.
炭/炭复合材料切削加工试验研究   总被引:2,自引:0,他引:2  
探讨了C/C复合材料结构和机构物理性能的特殊性及机构切削加工的特点。用SEM观察了不同切削条件下切屑的断口形貌。用5种不同的刀具材料、刀具角度及几何开头相同的刀具,在一定的切削工艺参数条件下,对该材料进行切削试验,以刀具有前刀面和/或后刀面的磨损率为判据,最佳刀具材料为YG8,在切削C/C复合材料的过程中,轨具的磨损极为严重,刀具磨损的主要机理是粘着磨损和磨粒磨损。  相似文献   

17.
《Materials & Design》2005,26(6):517-533
The use of high speed milling (HSM) for the production of moulds and dies is becoming more widespread. Critical aspects of the technology include cutting tools, machinability data, cutter path generation and technology. Much published information exists on cutting tools and related data (cutting speeds, feed rates, depths of cut, etc.). However, relatively little information has been published on the optimisation of cutter paths for this application. Most of the research work is mainly focused on cutter path generation with the main aim on reducing production time. Work with regards to cutter path evaluation and optimisation on tool wear, tool life, surface integrity and relevant workpiece machinability characteristics are scant. Therefore, a detailed knowledge on the evaluation of cutter path when high speed rough and finish milling is essential in order to improve productivity and surface quality. The paper details techniques used to reduce machining times and improve workpiece surface roughness/accuracy when HSM hardened mould and die materials. Optimisation routines are considered for the roughing and finishing of cavities. The effects of machining parameters notably feed rate adaptation techniques and cutting tools are presented.  相似文献   

18.
An experimental study was conducted to evaluate the performance of C6 tungsten carbide, C2 tungsten carbide, and Polycrystalline Diamond (PCD) inserts in cutting Graphite/Epoxy (Gr/Ep) composites. Continuous and interrupted cutting tests under dry conditions were made to cut woven fabric and tape Gr/Ep composites. It was found that continuous cutting mode and high cutting speeds significantly reduce tool life of carbides. Machining of tape Gr/Ep reduces the tool life more than the machining of fabric work pieces. Also, C2 grade carbide inserts had a longer tool life than C6 carbide inserts despite the type of work piece or machining condition used. It was observed that a PCD insert's life was about 100 times of C2 carbide inserts during continuous cutting and at high speeds.  相似文献   

19.
Cutting forces modeling is the basic to understand the cutting process, which should be kept in minimum to reduce tool deflection, vibration, tool wear and optimize the process parameters in order to obtain a high quality product within minimum machining time. In this paper a statistical model has been developed to predict cutting force in terms of geometrical parameters such as rake angle, nose radius of cutting tool and machining parameters such as cutting speed, cutting feed and axial depth of cut. Response surface methodology experimental design was employed for conducting experiments. The work piece material is Aluminum (Al 7075-T6) and the tool used is high speed steel end mill cutter with different tool geometry. The cutting forces are measured using three axis milling tool dynamometer. The second order mathematical model in terms of machining parameters is developed for predicting cutting forces. The adequacy of the model is checked by employing ANOVA. The direct effect of the process parameter with cutting forces are analyzed, which helps to select process parameter in order to keep cutting forces minimum, which ensures the stability of end milling process. The study observed that feed rate has the highest statistical and physical influence on cutting force.  相似文献   

20.
Not only milling parameters, but also cutting tool properties affect the machining performance. Therefore, in the current work, the effect of nose radius and cutting speed on the wear, force, surface roughness and chip morphology in down and up milling of AISI 304 stainless steel was investigated. Machining experiments were conducted with cutting tools with radii of 0.4, 0.8 and 1.2?mm at various cutting speeds in both down and up milling. Experimental results showed that the main tool failure mechanisms and modes were adhesion, abrasion, chipping and fracture during milling with various nose radii. Cutting forces dropped with the increment in nose radius regardless of the cutting speed and milling direction, except for up milling at 100?m/min. From the experimental results, it was found that roughness diminished with increase in both nose radius and speed. Surface roughness and the resultant forces during up milling were found to be lower than that during down milling. It was observed that the increment in nose radius increased the edge serration in chip morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号