首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
土壤-结构相互作用(SSI)会影响核电厂厂房的地震响应。本文充分考虑SSI效应的影响,对10 MW高温气冷堆(HTR-10)厂房在三向地震载荷下的响应进行了分析。建立了土壤-结构耦合有限元模型,通过构造人工边界实现对地震波在无限域内传播过程的模拟,并对模型的准确性进行了验证。利用该模型计算了HTR-10厂房的地震响应,并对不同楼层的反应谱计算结果进行了分析。对于水平向反应谱,各楼层的反应谱谱型类似,SSI影响规律基本一致。在竖直方向上,结构的响应特点与楼板自身的竖向频率特性有明显关系,不同楼板的响应差别较大。一般情况下,SSI效应对竖向响应有抑制作用,且随着楼层增加更为明显。当楼板与土壤的固有频率接近时,竖向响应与其他楼层相比会有显著放大。  相似文献   

2.
利用人工地震波生成算法,探讨考虑土壤-结构相互作用的核电厂电气厂房地震响应动力分析模型和计算方法。通过比较楼层反应谱,研究岩土材料参数和载荷的不确定性对结构响应的影响。结果表明:岩土材料参数对核电厂电气厂房地震响应的影响更大,单一岩土材料参数下计算得到的拓宽后的楼层反应谱不能完全包络参数变化带来的地震响应差别。即使最终的反应谱大于或等于各种不同岩土参数下的楼层反应谱,仍有必要对不同岩土参数下的楼层反应谱做包络。  相似文献   

3.
考虑SSI效应的核电站泵房结构楼层反应谱分析   总被引:2,自引:0,他引:2  
采用Super SAP和CLASSI程序对某在建核电站泵房结构进行了极限安全地震震动和运行安全地震震动情况下的土壤-结构相互作用(SSI)的地震分析,揭示了结构在时域内的特性;通过傅立叶变换(FFT)分析了结构在频域内的特性,求得建筑结构中各楼层反应谱,结合核电厂设计规范分别给出了在较硬地基岩土条件下,结构考虑和不考虑SSI时各楼层反应谱,并对其进行了比较分析.结果表明,SSI效应对结构楼层反应谱的谱形、谱值以及零周期平台高度有一定的影响.  相似文献   

4.
以压水堆核电站反应堆厂房结构为分析对象,利用功率谱密度函数法(PSDF)建立了楼层反应谱(FRS),研究了在增加隔震装置情况下,土-结构相互作用(SSI)、主次结构耦合作用和次结构阻尼比等因素对FRS计算的影响,定量分析了厂房结构FRS对这几种因素的敏感性.研究结果表明,隔震后FRS峰值下降明显,并且主要出现在隔震频率附近;同时隔震作用、SSI和主次结构耦合作用交叉影响,厂房设计时必需综合考虑这几种作用.  相似文献   

5.
核反应堆厂房结构楼层反应谱的敏感性分析   总被引:13,自引:2,他引:11  
以某千兆瓦级压水堆核电站反应堆厂房结构为对象,研究了考虑土一结构动力相互作用的硬土场地条件下地基土动态剪切模量的变化对楼层反应谱计算的影响,定量分析了厂房结构楼层加速度反应谱对地基土动态参数变化的敏感性,从而为评估类似硬土场地条件下核反应堆厂房结构抗震安全性提供了一种可供参考的计算方法。  相似文献   

6.
大亚湾核电站核岛厂房的抗震分析遵循技术输出国-法国M310型机组的土建技术规范RCC-G,采用简化的阻抗函数法计算地基岩土的作用.根据大亚湾厂址的地基岩土特点,拟采用更为精确的三维连续半空间边界子结构法来考虑地基岩土的作用,并与原设计进行对比.另外,在原设计中采用多组时程作为地震输入,取各组计算结果的平均值作为设计值的基础(称为"平均"法).在研究中基于相同的时程,拟分别采用"平均"法和更为常用的"包络"法,处理多组时程的响应.基于上述两方面,通过反应堆厂房的地震响应计算,得到核电站系统设备重要的设计基础数据-楼层反应谱(FRS),并将计算的楼层反应谱同设计谱进行比较,从而对设计方法及其结果进行评估,为电站的抗震设计裕量评估和安全管理提供可资参考的结论.  相似文献   

7.
根据18-5临界装置某机柜抗震试验分析的要求,利用ANSYS大型通用有限元程序,建立临界装置厂房结构的有限元模型。在其地基处输入给定的位移时程,对结构进行动力分析,计算得到厂房结构中机柜位置处的位移时程、加速度时程等力学量。用该关键位置处的加速度时程计算其相应的加速度响应谱,分别给出了运行基准地震(OBE)和安全停堆地震(SSE)作用下该厂房标高3.50 m主控制室位置处阻尼比为2%、4%、5%和7%的楼层响应谱。  相似文献   

8.
结合结构-地基动力相互作用数值分析的最新发展,在集总参数场地动力简化模型的框架内,提出了一种便于非均质场地条件采用的核电站厂房时频域动力分析的新模式。该模式利用谐响应法求解场地真实频域动阻抗曲线,利用混合变量模型保证频域动刚度的时域无损转换,实现楼层谱的全时域计算。最后,以某百万千万级核电站反应堆厂房的抗震分析为例,开展均质与非均质场地条件下动刚度及上部结构楼层谱计算的对比研究,验证了该分析方法的精度与应用效果。计算结果表明,比较均质场地条件,水平成层非均质场地条件下竖直方向楼层谱峰值有较大幅度改变,必须在核电抗震安全评价中加以重视。  相似文献   

9.
李忠诚  李忠献 《核动力工程》2005,26(6):614-617,644
大亚湾核电厂核反应堆厂房的抗震分析基本沿用法国M310型机组的标准分析方法(RCC—G),对于土-结构相互作用(SSI)效应的考虑,采用简化的阻抗函数法。本文拟采用新的相对精确的基于Green函数的三维连续半空间边界子结构法考虑地基岩土的作用,进行SSI耦合系统的地震响应分析计算,并将计算的楼层反应谱(FRS)同设计值进行比较,对设计方法及其结果的趋向性(偏于安全/或不安全)进行评估。结果表明,与基于三维连续半空间边界子结构法的计算结果相比较,电厂设计偏于安全。  相似文献   

10.
为研究地震波空间相干效应对核岛厂房土与结构相互作用分析的影响,采用ACS-SASSI软件对典型的压水堆厂房的土与结构相互作用分析时,分析不同土层、不同标高处,空间相干性对楼面反应谱的影响。结果表明,在高频段考虑空间相干性,对于中硬质岩石场地和坚硬土至软质岩石场地将降低楼层响应10%~70%;在高频段考虑空间相干性,对于中硬土场地将降低楼层响应10%~40%。因此,不考虑空间相干性,其楼层响应分析结果高频段偏保守,低频段偏不安全。   相似文献   

11.
A safe shutdown earthquake analysis of ZPR 6 Reactor Facility was conducted through seismic risk analysis, soil-structure interaction analysis, reactor building dynamic time history analysis and equipment response spectrum analysis due to an assumed El Centro earthquake. Several ASME, AISC and ANSI design codes were used to demonstrate the adequacy of this facility and to design several equipment and piping supports.  相似文献   

12.
A practical method to calculate the elasto-plastic seismic response of structures considering the dynamic soil-structure interaction is presented. The substructure technique in the time domain is utilized in the proposed method. A simple soil spring system with the coupling effects which are usually evaluated by the impedance matrix is introduced to consider the soil-structure interaction for embedded structures. As a numerical example, the response of a BWR-MARK II type reactor building embedded in the layered soil is calculated. The accuracy of the present method is verified by comparing its numerical results with exact solutions. The nonlinear behavior and the soil-structure interaction effects on the response of the reactor building are also discussed in detail. It is concluded that the present method is effective for the seismic design considering both the material nonlinearity of the nuclear reactor building and the dynamic soil-structure interaction.  相似文献   

13.
The seismic soil-structure interaction response of a nuclear reactor building requires modeling of the soil-structure interface. It allows slip and separation at the interface that affects the behavior and response of the reactor. The joint elements used to model the soil-structure interface, require incorporation of appropriate joint stiffness so that slip and separation phenomena take place under the warranted conditions. This slip and separation causes change in the response of the structure. This paper duly addresses the related aspects through comparative study of responses and draws important conclusions useful for design of nuclear reactor building.  相似文献   

14.
The probabilistic safety assessment (PSA) is important for nuclear power buildings in Japan because the risk of the occurrence of seismic ground motions beyond the design assumption cannot be denied. In this paper, the building fragility of the seismic PSA was evaluated using a high accuracy analysis model (three-dimensional nonlinear FEM building model considering soil-structure interaction and basemat uplift behavior). First, the response analyses were conducted increasing the input acceleration up to 3500 Gal, until the damage of the building reached the ultimate condition. The damage of the building was estimated from the shear strain, the axial stress, and the consumed strain energy of the shear walls. Then, the influence on the response given by the vertical ground motion and the basemat uplift was evaluated. In addition, considering the shear destruction of the web wall and compressive crash of the flange wall as the fracture modes, the building fragility was evaluated. As a result, it was shown that the investigated method is efficient for more accurate seismic PSA estimation.  相似文献   

15.
This paper proposes a slightly new three-dimensional radial-shaped dynamic infinite elements fully coupled to finite elements for an analysis of soil-structure interaction system in a horizontally layered medium. We then deal with a seismic analysis technique for a three-dimensional soil-structure interactive system, based on the coupled finite-infinite method in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with wave functions propagating multi-generated wave components. The accuracy of the dynamic infinite element and effectiveness of the seismic analysis technique may be demonstrated through a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are (1) a site response analysis of the well-known Hualien site excited by all travelling wave components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of a nuclear power plant. The obtained dynamic results show good agreement compared with the measured response data and numerical values of other soil-structure interaction analysis package.  相似文献   

16.
The dynamic response of structures due to seismic loadings is conventionally analyzed in the time domain using substructure methods (decoupled system models). This procedure uses frequency-independent impedances to represent capabilities of the soil underneath the structure. The soil parameters are tuned to the fundamental frequencies of the soil-structure system. This is a common procedure widely used in the preliminary design of power plant structures which provides conservative results. However, parallel to the rapid progress being made in upgrading the capability of data processing systems, methods and software tools have become available which work also in the frequency domain using complex models (for the soil and the structure) or models in which the soil is represented by frequency-dependent impedances. This procedure (coupled system models) also allows realistic treatment of kinematic interaction effects and especially consideration of the embedment parameters of the building structure. The main goal of the study presented here was to demonstrate the effects of different procedures for consideration of soil-structure interaction on the dynamic response of the structures mentioned above. The analyses were based on appropriate mathematical models of the coupled vibrating structures (reactor building, turbine hall, intermediate building structures of a VVER 440/213 as well as the main building of the VVER 1000) and the layered soil. On the basis of this study, it can be concluded that substructure methods using frequency-independent impedances (equivalent dashpots) and cut-off of modal damping usually provide conservative results. Coupled system models which allow the soil-structure interaction effects to be realistically represented (by coupled models of the soil and the structure or by frequency-dependent impedances) provide more accurate results. The advantage of the analysis using coupled system models will be demonstrated and discussed, based on results obtained for the VVER 440/213 PAKS and VVER 1000 Kozloduy.  相似文献   

17.
An investigation of the significance of non-linear behavior in the seismic response of the experimental gas-cooled reactor (ECGR) facility has been performed using explosives impulses and ‘snapback’ tests. The study focuses on soil-structure interaction effects and non-linear characteristics of containment building and steam generator responses. Comparison of the result of these at large excitation levels (corresponding to large earthquakes) with the results of earlier steady-state low-level vibration tests shows marked departures from response predicted by conventional linear modeling. The results illustrate the significant non-conservative errors possible when using linear theory to predict large amplitude responses of systems exhibiting non-linear behavior.  相似文献   

18.
The object of this investigation is the response of a reactor building on seismic action with systematic variation of the soil stiffness. A thin-walled orthotropic containment shell on varying heavy and rigid foundations is regarded as calculation model. The soil stiffness is simulated by means of spring elements for horizontal translation and for rocking motions of the building. By the response spectra method the loads of the containment shell are calculated for a horizontal seismic excitation. The investigation is aimed at determining the influence of differentiated soil stiffnesses on the containment action effects and at recognizing the causes for the occurring effects.The results are thoroughly represented by selected quantities of the building's response, the effects from the soil-structure interaction are discussed and the causes of the effects clearly explained. A possibility is provided for determining critical soil stiffnesses which cause a significant intensification effect.The results of the investigations show that both the soil stiffness and structural configuration of the reactor building, particularly in case of the substructure being heavy and rigid, exert a decisive influence on the loading of the superstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号