首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了更好地利用图像信息和增强图像的视觉效果,图像去噪成为图像处理领域中一个热点问题.针对图像去噪问题,本文在低秩矩阵填充理论的基础上,提出了两种基于加权低秩矩阵填充的图像去噪算法.首先,基于补丁匹配提取相似的补丁组成低秩矩阵;其次,利用相似补丁的性质形成含有缺失项的低秩矩阵;然后,利用加权核范数构建补丁块的去噪模型;最...  相似文献   

2.
3.
4.
低秩矩阵恢复算法综述   总被引:8,自引:3,他引:8  
将鲁棒主成分分析、矩阵补全和低秩表示统称为低秩矩阵恢复,并对近年来出现的低秩矩阵恢复算法进行了简要的综述。讨论了鲁棒主成分分析的各种优化模型及相应的迭代算法,分析了矩阵补全问题及求解它的不精确增广拉格朗日乘子算法,介绍了低秩表示的优化模型及求解算法。最后指出了有待进一步研究的问题。  相似文献   

5.
由于传统的人脸识别算法效果容易受制于光照、表情、遮挡以及稀疏大噪声等外界因素的影响,如何有效提取数据特征、进一步提升算法的鲁棒性,是传统人脸识别方法发展的关键所在.本文将多矩阵低秩分解应用在人脸特征提取中,充分利用多张人脸之间的结构相似性,探索人脸图像集的低秩子空间,进而结合低秩矩阵恢复模型来提取测试样本的低秩特征.最...  相似文献   

6.
标准的低秩矩阵恢复算法是把原始数据集分解成一组表征基和与此相应的稀疏误差,并以此分解对原始数据建模。受Fisher准则启发,文中提出基于带有Fisher判别准则的低秩矩阵恢复算法,在有监督学习模式下对低秩矩阵进行恢复,即当所有的标签信息都知道的情况下考虑类内散度和类间散度。文中所构造的模型可利用增广拉格朗日乘子法求解,并通过对标准的低秩矩阵模型增加判别性提高性能,利用文中算法所学习到的表征基使类内结构相关,而类间相互独立。在人脸识别问题上的仿真实验表明该算法的有效性。  相似文献   

7.
周静波  黄伟 《控制与决策》2021,36(7):1707-1713
基于低秩矩阵恢复(low-rank matrix recovery,LRMR)的显著性目标检测模型将图像特征分解为与背景关联的低秩分量和与显著性目标相关联的稀疏分量,并从稀疏分量中获得显著性目标.现有的显著性检测方法很少考虑低秩分量与稀疏分量之间的相互关系,导致检测的显著性目标零散或不完整.为此,提出基于低秩矩阵恢复的...  相似文献   

8.
针对训练样本和测试样本均受到严重的噪声污染的人脸识别问题,传统的子空间学习方法和经典的基于稀疏表示的分类(SRC)方法的识别性能都将急剧下降。另外,基于稀疏表示的方法也存在算法复杂度较高的问题。为了在一定程度上缓解上述问题,提出一种基于判别低秩矩阵恢复和协同表示的遮挡人脸识别方法。首先,低秩矩阵恢复可以有效地从被污损的训练样本中恢复出干净的、具备低秩结构的训练样本,而结构非相关性约束的引入可以有效提高恢复数据的鉴别能力。然后,通过学习原始污损数据与恢复出的低秩数据之间的低秩投影矩阵,将受污损的测试样本投影到相应的低维子空间,以修正污损测试样本。最后,利用协同表示的分类方法(CRC)对修正后的测试样本进行分类,获取最终的识别结果。在Extended Yale B和AR数据库上的实验结果表明,本文方法对遮挡人脸识别具有更好的识别性能。  相似文献   

9.
在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法--SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。  相似文献   

10.
从压缩传感到低秩矩阵恢复: 理论与应用   总被引:11,自引:0,他引:11       下载免费PDF全文
综述了压缩传感、矩阵秩最小化和低秩矩阵恢复等方面的基础理论及典型应用. 基于凸优化的压缩传感及由其衍生的矩阵秩最小化和低秩矩阵恢复是近年来的研究热点,在信号处理、 推荐系统、高维数据分析、图像处理、计算机视觉等很多研究领域具有重要和成功的应用. 在这些实际的应用中,往往涉及到对高维数据的分析与处理,需要充分和合理利用数据中的如稀疏性或其所构成矩阵的低秩性等性质. 尽管在最坏情况下,最小化诸如稀疏性或矩阵秩这样的目标函数是 NP 难的,但是在某些合理的假设条件下,通过优化目标函数的凸松弛替代函数, 采用凸优化的方法,能够精确地给出原问题的最优解. 有很多高效的凸优化算法对之进行求解且适用于大规模问题.本文首先分别综述了压缩传感、 矩阵秩最小化和低秩矩阵恢复的相关基础理论,然后对其在图像处理、计算机视觉和计算摄像学等领域的典型应用予以举例介绍,并展望了相关领域未来的研究工作.  相似文献   

11.
Dictionary learning plays a crucial role in sparse representation based image classification. In this paper, we propose a novel approach to learn a discriminative dictionary with low-rank regularization on the dictionary. Specifically, we apply Fisher discriminant function to the coding coefficients to make the dictionary more discerning, that is, a small ratio of the within-class scatter to between-class scatter. In practice, noisy information in the training samples will undermine the discriminative ability of the dictionary. Inspired by the recent advances in low-rank matrix recovery theory, we apply low-rank regularization on the dictionary to tackle this problem. The iterative projection method (IPM) and inexact augmented Lagrange multiplier (ALM) algorithm are adopted to solve our objective function. The proposed discriminative dictionary learning with low-rank regularization (D2L2R2) approach is evaluated on four face and digit image datasets in comparison with existing representative dictionary learning and classification algorithms. The experimental results demonstrate the superiority of our approach.  相似文献   

12.
作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。其次讨论了矩阵补全的低秩矩阵分解模型,并列出了近年来出现的求解此模型的新算法。然后补充了上述两种模型的衍生版本,指出了相应的求解方法。在数值实验中,对文中所讨论的主要矩阵补全算法的性能进行了比较。最后给出了矩阵补全算法的未来研究方向及重点。  相似文献   

13.
常见的图像去噪方法只是单独地利用了无噪图像或含噪图像的先验信息,并没有将这两种图像的先验信息有效地结合起来。针对这个问题,提出一种 联合无噪图像块的先验信息和含噪图像块的非局部自相似性进行去噪的图像去噪算法。首先,对无噪图像块进行谱聚类,通过谱聚类进行学习,图像中的相似块被聚集到同一类,并将学习得到的聚类信息用于含噪图像块的聚类;然后,向量化同一类中的含噪图像块并聚集形成一个矩阵,该矩阵中包含的原始图像数据构成一个低秩矩阵;再通过一个低秩逼近过程估计出相应的原始图像数据;最后,根据逼近得到的原始图像数据重建图像。实验结果表明,相较于已有的自适应正则化的非局部均值去噪算法以及基于主成分分析和局部像素聚类的两级图像去噪算法,提出的算法不仅可以获得较大的峰值信噪比,而且还能较好地保存图像的细节,取得了更好的去噪效果。  相似文献   

14.
数字图像因噪声的影响会严重降低其视觉效果,图像降噪算法的研究是数字图像处理领域的一个重要研究方向。本文在基于稀疏和冗余字典的图像降噪算法基础上,提出了一种基于非局部思想的改进图像降噪算法。与传统的基于稀疏表达的图像降噪算法KSVD相比,本文算法增加了一个相似块聚合的过程,使得学习的字典更小且更准确。利用自然图像包含很多的自相似,相似样本聚合学习出的字典比传统KSVD算法能更准确更稀疏的表示样本。稀疏度的提高使得重建后的信号更加的准确,适应性更好。实验证明本文算法取得了更好的视觉效果。  相似文献   

15.
    
Image denoising plays an important role in image processing, which aims to separate clean images from the noisy images. A number of methods have been presented to deal with this practical problem in the past decades. In this paper, a sparse coding algorithm using eigenvectors of the graph Laplacian (EGL-SC) is proposed for image denoising by considering the global structures of images. To exploit the geometry attributes of images, the eigenvectors of the graph Laplacian, which are derived from the graph of noised patches, are incorporated in the sparse model as a set of basis functions. Sequently, the corresponding sparse coding problem is presented and efficiently solved with a relaxed iterative method in the framework of the double sparsity model. Meanwhile, as the denoising performance of the EGL-SC significantly depends on the number of the used eigenvectors, an optimal strategy for the number selection is employed. A parameter called as out-of-control rate is set to record the percentage of the denoised patches that suffer from serious residual errors in the sparse coding procedure. Thus, with the eigenvector number increasing, the appropriate number can be heuristically selected when the out-of-control rate falls below an empirical threshold. Experiments illustrate that the EGL-SC can achieve a better performance than some other well-developed denoising methods, especially in the structural similarity index for the noise of large deviations.  相似文献   

16.
孙少超 《计算机科学》2016,43(Z11):208-209, 236
利用GMM模型对自然图像块进行学习,对高斯分量的协方差矩阵做PCA,用其特征向量组成的矩阵作为子字典,用特征值 的大小作为对稀疏系数加权的依据,并将该模型应用到CSR模型中得到一种新的去噪模型,并给出模型的优化算法。为了验证提出的模型的有效性,设计了比较的仿真实验,实验表明与一些先进的模型相比,该方法具有优势。  相似文献   

17.
樊强  齐春 《计算机科学》2014,41(10):80-83,116
显著性检测是计算机视觉研究的一个重要问题。提出了一种由底向上的基于稀疏表示的显著性检测新算法。一般显著性检测主要包含两个部分,即图像特征提取和显著性度量。对于一幅给定的图像,首先利用独立成分分析(ICA)方法提取图像特征,然后用一个局部和全局模型对图像进行显著性度量。其中,利用一种低秩表示方法提取全局显著性,以及利用一种稀疏编码方法提取局部显著性。最后融合局部和全局显著图得到最终的显著图。在一个人眼关注数据库上与目前几种流行的方法进行了对比实验,实验结果显示所提出的方法能够得到更高的视觉关注预测准确率。  相似文献   

18.
针对盲环境监控视频图像降噪问题,以及当前图像降噪方法中存在的运行效率较低、降噪图像失真度较高等不足之处,结合稀疏编码技术,提出盲环境下稀疏编码监控视频图像降噪方法。根据稀疏表示理论,将其扩展应用到监控视频图像中,利用正交匹配追踪算法对待处理图像进行稀疏编码;采用自适应方式从含噪图像块样本中获取字典,结合自变量分解及拉格朗日算法进行相关问题求解,并据此对图像稀疏编码系数进行优化;结合噪声模型与图像系统的观察模型,对待处理图像进行噪声估计,根据全部噪声估计均值进行图像降噪处理。仿真结果表明,所提盲环境下稀疏编码监控视频图像降噪方法的图像降噪效果优于实验对比方法,且降噪处理时间更短,具有较好的鲁棒性。  相似文献   

19.
We introduce a coefficient update procedure into existing batch and online dictionary learning algorithms. We first propose an algorithm which is a coefficient updated version of the Method of Optimal Directions (MOD) dictionary learning algorithm (DLA). The MOD algorithm with coefficient updates presents a computationally expensive dictionary learning iteration with high convergence rate. Secondly, we present a periodically coefficient updated version of the online Recursive Least Squares (RLS)-DLA, where the data is used sequentially to gradually improve the learned dictionary. The developed algorithm provides a periodical update improvement over the RLS-DLA, and we call it as the Periodically Updated RLS Estimate (PURE) algorithm for dictionary learning. The performance of the proposed DLAs in synthetic dictionary learning and image denoising settings demonstrates that the coefficient update procedure improves the dictionary learning ability.  相似文献   

20.
It has been proved that the geometric information in images produce most stimulus of human eyes, which is important for the image recovery. However, the local geometric structure in images are too diverse to be accurately captured. Recent decade has witnessed a flourish of biological inspired algorithms in the image recovery. In this paper, inspired the adaptive and sparse characteristic of visual perception of humans, we advance an adaptive steerable kernel based Sparse Double-Geometric Nonlocal Mean (SDGNLM) denoising algorithm by exploring the local geometric information in both the “neighbor location” and “similarity measure”. In our method, a steerable kernel is employed to reveal the local geometric information of pixels, and sparse assumption of neighbors is cast on pixels to achieve more accurate image recovery. Moreover, a weighted sparse optimization algorithm is proposed to find and weight neighbors having the similar characteristics with each pixel. Some experiments are taken on some benchmark natural images, and the experimental results demonstrate its superiorities to NLM algorithm and its variants, in terms of both visual results and numerical guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号