共查询到19条相似文献,搜索用时 93 毫秒
1.
多目标进化算法的研究与进展 总被引:2,自引:0,他引:2
多目标优化问题通常难以处理,在20世纪80年代中期人工智能的进化算法开始应用于该领域.近10年来涌现了很多种多目标进化算法,一些已成功应用到工程实践中,从而形成了最近的一个热门研究领域.本文阐述了多目标进化算法研究的有关工作进展,并提出今后需要研究的问题,旨在引起大家对此新兴研究领域的关注与兴趣,从而推动与此相关问题的研究. 相似文献
2.
基于新模型的动态多目标优化进化算法 总被引:1,自引:1,他引:1
在动态多目标优化中,各目标通常相互冲突,其最优解往往有无穷多个,如何在时间连续发生变化的情况下依然能求出分布均匀且数量多的Pareto最优解供决策者选择十分重要.对动态多目标优化问题连续变化的时间变量区间进行了任意划分,在得到的每个时间子区间上把动态多目标优化问题近似为静态多目标优化问题,进而在每个子区间上定义了种群的静态序值方差和静态密度方差,然后把目标个数任意的动态多目标优化问题转化成一个双目标静态优化问题.在给出的一种能自动检测时间变化的自检算子下,提出一种新的动态多目标优化进化算法,并且证明了算法的收敛性.计算机仿真表明新算法对动态多目标优化问题求解十分有效. 相似文献
3.
在多目标进化算法的基础上,提出了一种基于云模型的多目标进化算法(CMOEA).算法设计了一种新的变异算子来自适应地调整变异概率,使得算法具有良好的局部搜索能力.算法采用小生境技术,其半径按X条件云发生器非线性动态地调整以便于保持解的多样性,同时动态计算个体的拥挤距离并采用云模型参数来估计个体的拥挤度,逐个删除种群中超出的非劣解以保持解的分布性.将该算法用于多目标0/1背包问题来测试CMOEA的性能,并与目前最流行且有效的多目标进化算法NSGA-II及SPEA2进行了比较.结果表明,CMOEA具有良好的搜索性能,并能很好地维持种群的多样性,快速收敛到Pareto前沿,所获得的Pareto最优解集具有更好的收敛性与分布性. 相似文献
4.
优化设计中的多目标进化算法 总被引:5,自引:0,他引:5
近十多年来多目标进化算法是人工智能领域的一个相当活跃的研究热点。该文从非Pareto方法、基于Pareto方法及贝叶斯多目标优化算法等角度对当今多目标进化算法进行了分析,归纳了新出现的各种方法和技术,探讨了这个领域发展中存在的问题,并进一步给出了发展方向。此外文中分别对后两类提出了解决一般问题的计算效果较好的改进算法和新的算法。 相似文献
5.
多目标进化算法研究进展 总被引:19,自引:0,他引:19
进化算法具有本质上并行、不需要求导或其他辅助知识、一次运行产生多个解和简单易于实现等优点,被视为求解多目标优化问题的有效方法,目前已经形成了各种不同的多目标进化算法(MOEA)。本文首先回顾了多目标进化算法的研究起源,给出了多目标优化问题的数学描述;其次,详细分析了第一代多目标进化算法,其主要特征是简单易于实现,包括NSGA、NPGA、MOGA等,并指出这一代算法研究的成绩与不足;然后,对第二代多目标进化算法作了全面分析,指出其特征是强调效率,以精英保留策略为实现机制,且对SPEA、PAES、NSGAⅡ、NPGA2、PESA、Micro-GA等方法进行分析比较,还对这一代的研究作了总结;最后,对多目标进化算法的研究趋势作了展望和预测。 相似文献
6.
一种基于多Agent的进化多目标优化算法 总被引:1,自引:0,他引:1
将进化多Agent系统引入多目标优化问题求解,通过Agent的局部搜索机制及Agent种群的协同进化机制来寻求Pareto最优解。在设计的进化算法当中借鉴了人工生命系统中的一些基本方法,如能量、小生境和迁移机制等。实例表明通过该进化算法求得Pareto最优解集具有很高的效率。 相似文献
7.
8.
9.
为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。 相似文献
10.
多目标演化算法的进展研究 总被引:1,自引:0,他引:1
回顾多目标演化算法的研究历史,给出问题相应的数学描述;其次,分析经典的第一代多目标进化算法,阐明这一代算法的优点与不足;对新一代多目标进化算法作详细的分析,其主要特点是构造外部种群实现精英保留机制;最后多目标进化算法的研究方向作展望. 相似文献
11.
多目标优化与自适应惩罚的混合约束优化进化算法 总被引:5,自引:0,他引:5
提出一种多目标优化与自适应惩罚函数相结合的方法来处理约束优化问题.首先利用多目标优化方法提取当前群体中的主要信息;然后进一步用自适应惩罚函数选出最有价值的信息.将这种约束处理技术与一种基于群的算法生成器模型相结合,即可得到一种新的约束优化进化算法.选取10个标准测试函数对新算法的性能进行数值实验,结果表明了所提出方法的有效性和较强的稳健性,与其他尖端算法相比得到了相似或更优的结果. 相似文献
12.
进化多目标优化设计满意解的模糊决策 总被引:3,自引:1,他引:3
文章提出了一种进化多目标优化满意解的模糊决策方法。首先,根据各个子目标满意度对所有pareto最优解的性能做出模糊评价,并在此基础上将整个pareto解集划分为若干个具有不同性能特征的类;然后根据决策者对目标的模糊偏好,从相应的类中选择最有代表性的个体作为最终的满意解。最后以两杆桁架多目标优化问题为例,说明了该方法的应用。 相似文献
13.
14.
动态多目标优化进化算法及性能分析 总被引:1,自引:0,他引:1
针对动态多目标优化问题提出了一种求解的新进化算法。首先,构建了一种近似估计新环境下动态多目标优化问题的Pareto核迁移估计模型。其次,当探测到问题环境发生改变时,算法利用以前环境搜索到的Pareto核的有效信息通过Pareto核迁移估计模型对新环境下的进化种群进行近似估计;当问题的环境未发生变化时,引入了带区间分割的变异算子和非劣解存档保优策略,以提高算法的搜索效率。最后计算机仿真表明新算法对动态多目标优化问题十分有效。 相似文献
15.
16.
高维多目标优化问题普遍存在且难以解决, 到目前为止, 尚缺乏有效解决该问题的进化优化方法. 本文提出一种基于目标分解的高维多目标并行进化优化方法, 首先, 将高维多目标优化问题分解为若干子优化问题, 每一子优化问题除了包含原优化问题的少数目标函数之外, 还具有由其他目标函数聚合成的一个目标函数, 以降低问题求解的难度; 其次, 采用多种群并行进化算法, 求解分解后的每一子优化问题, 并在求解过程中, 充分利用其他子种群的信息, 以提高Pareto非被占优解的选择压力; 最后, 基于各子种群的非被占优解形成外部保存集, 从而得到高维多目标优化问题的Pareto 最优解集. 性能分析表明, 本文提出的方法具有较小的计算复杂度. 将所提方法应用于多个基准优化问题, 并与NSGA-II、PPD-MOEA、ε-MOEA、HypE和MSOPS等方法比较, 实验结果表明, 所提方法能够产生收敛性、分布性, 以及延展性优越的Pareto最优解集. 相似文献
17.
18.
基于数据仓库的多目标优化遗传算法 总被引:1,自引:0,他引:1
基于数据仓库的多目标优化遗传算法为解决多目标优化问题提供了有效的途径。其基本思想是:为求Pareto最优解的多目标优化遗传算法建立一个数据仓库,将进化过程中所产生的每一代Pareto最优解放入数据仓库中,在每一代先对数据仓库中的所有个体进行求Pareto最优解运算,淘汰掉劣解,再进行个体间的欧氏距离运算,将小于指定值的其中一个个体作为劣解处理。大量的计算机仿真计算表明,这种算法不仅能够有效地避免交叉或变异操作对Pareto最优解产生的破坏,而且进化速度极快,算法稳定,一般只需20 ̄40代的运算,即可得到分布广泛的Pareto最优解。 相似文献
19.
基于数据仓库的多目标优化遗传算法为解决多目标优化问题提供了有效的途径。其基本思想是:为求Pareto最优解的多目标优化遗传算法建立一个数据仓库,将进化过程中所产生的每一代Pareto最优解放入数据仓库中,在每一代先对数据仓库中的所有个体进行求Pareto最优解运算,淘汰掉劣解,再进行个体间的欧氏距离运算,将小于指定值的其中一个个体作为劣解处理。大量的计算机仿真计算表明,这种算法不仅能够有效地避免交叉或变异操作对Pareto最优解产生的破坏。而且进化速度极快,算法稳定,一般只需20-40代的运算.即可得到分布广泛的Pareto最优解。 相似文献