共查询到20条相似文献,搜索用时 15 毫秒
1.
针对铁基非晶条带-玻璃纤维混杂增强树脂基复合材料,研究了表面处理、热处理对非晶条带力学性能的影响,在此基础上选取了适宜的树脂基体,制备了混杂复合材料,测试了基本力学性能并分析了破坏模式。结果表明:酸蚀表面处理对条带的拉伸性能影响很小,但改变了条带的表面形貌和表面能,从而提高了条带与树脂的粘结性能;混杂复合材料纵向拉伸弹性模量符合混合定律,横向拉伸弹性模量主要由非晶条带贡献,并且非晶条带的承载对混杂复合材料的横向拉伸强度起到了一定的作用;弯曲破坏和剪切破坏均产生受压侧纤维层与非晶条带的分层以及纤维断裂。 相似文献
2.
Jingmei Ma Feng Ye Limeng Liu Haijiao Zhang 《Materials Science and Engineering: A》2009,520(1-2):158-161
Dense short silicon carbide (SiCsf) and carbon fibers (Csf) reinforced BaAl2Si2O8 (BAS) glass-ceramic composites with silicon nitride were fabricated by hot-pressing technique. The phase characterization, microstructure, mechanical properties and fracture behavior of the composites were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and three-point bending tests. The results showed that short silicon carbide and carbon fibers disperse homogeneously in BAS matrix, and had good chemical compatibility with the glass-ceramic matrix. The addition of Si3N4 could successfully eliminate the microcracks in the BAS matrix induced by the thermal mismatch between the fiber and matrix. Both the added short fibers could effectively reinforce the BAS glass-ceramic by the associated toughening mechanisms such as crack deflection, fiber bridging and pullout effects. 相似文献
3.
竹纤维增强聚乳酸复合材料热老化性能 总被引:3,自引:0,他引:3
采用氢氧化钠和异氰酸酯处理的界面调控方法对竹纤维(BF)增强聚乳酸(PLA)复合材料界面进行调控,通过注射成型工艺制备BF/PLA复合材料。利用FTIR、XRD、凝胶渗透色谱及SEM等分析手段研究了BF/PLA复合材料热老化性能。研究发现: 热老化过程中PLA分子链中的C O不断水解,分子链的C—O断裂生成聚合度更低的小分子量的PLA,PLA结晶度减小,PLA与BF的接合界面被破坏,拉伸强度和冲击强度随老化时间的增加逐渐降低。BF/PLA复合材料在80℃热老化16天后拉伸强度和冲击强度分别降低了75%和77.6%,在100℃热老化32 h后拉伸强度和冲击强度分别降低了80.3%和83.4%。温度对BF/PLA复合材料老化影响显著,温度越高,老化速度越快。 相似文献
4.
将玄武岩纤维置于混杂铺层的压缩侧,研究了碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料的弯曲性能及混杂比对其弯曲性能的影响。通过对试样进行三点弯曲试验得到了材料的弯曲性能,并通过扫描电子显微镜观察材料的失效模式。与纯碳纤维增强环氧树脂基复合材料相比,当混杂比为16.7%和33.3%时,混杂复合材料的弯曲强度明显提升,弯曲强度分别提高12.4%和15.2%,但是其弯曲模量随着混杂比的提升而降低。混杂后的材料及玄武岩纤维增强环氧树脂基复合材料的失效位移都高于碳纤维增强环氧树脂基复合材料,断裂韧性明显提升。从侧面观察可以发现不同铺层在压缩侧、拉伸侧和中间层有不同的失效形式。 相似文献
5.
为提高ZL109合金的耐磨损性能,用挤压铸造法制备了硅酸铝短纤维(Al2O3-SiO2f)和石墨颗粒(Grp)混杂增强ZL109复合材料.采用SRV摩擦磨损试验机研究了石墨颗粒含量和运动频率对该混杂复合材料的抗咬合性能的影响.结果表明:单一20%Al2O3-SiO2f增强复合材料的咬合载荷较基体合金有大幅度提高,混杂Grp后复合材料的咬合载荷进一步提高,且其含量为5%~8%时咬合载荷最大;复合材料的抗咬合性能比基体合金提高2倍以上,运动频率越高,提高幅度越大,当运动频率为100 Hz时,经20%Al2O3-SiO2f 5%Grp混杂增强的复合材料其抗咬合性能的提高幅度最高达12倍.Al2O3-SiO2f和Grp混杂增强可以显著改善ZL109合金的抗咬合性能. 相似文献
6.
7.
Enih Rosamah Md. Sohrab Hossain W.O. Wan Nadirah Rudi Dungani A.S. Nur Amiranajwa 《Advanced Composite Materials》2017,26(3):259-272
Oil palm shell (OPS) nanoparticles were utilized as filler in fibers reinforced polyester hybrid composites. The OPS nanoparticles were successfully produced from the raw OPS using high-energy ball milling process. Fundamental properties including morphology, crystalline size, and particle size of the OPS nanoparticles were determined. Tri-layer natural fiber reinforcement (kenaf–coconut–kenaf fiber mat) polyester hybrid composites were prepared by hand lay-up techniques. The influences of the OPS nanoparticles loading in the natural fibers reinforced polyester hybrid composites were determined by analyzing physical, mechanical, morphological, and thermal properties of the composites. Results showed that the incorporation of the OPS nanoparticles into the hybrid composites enhanced the composite properties. Further, the natural fibers reinforced polyester hybrid composite had the highest physical, mechanical, morphological, and thermal characteristics at 3 wt.% OPS nanoparticles loading. 相似文献
8.
Simultaneous influence of polypropylene-graft-maleic anhydride (MAPP) and silane-treated hemp fibers (HF) on morphology, thermal and mechanical properties of high-flow polypropylene (PP) modified with poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) was studied in this paper. The addition of SEBS reduced the efficiency of MAPP in PP composites with HF, thus silane-treated fibers (HFs) were used to improve polymer–fiber interface. Thermal stability of HF was improved after silane treatment and less than 2% weight loss was observed at 240 °C in composites with 30 wt% HF. Better dispersion of fibers and better efficiency in enhancing static and dynamic mechanical properties of PP, doubling its strength and stiffness were observed in composites with treated fibers compared to untreated ones. High ability to absorb and dissipate energy and well-balanced strength and stiffness were showed by PP modified with SEBS and MAPP containing 30 wt% HFs. These composites were studied as an alternative to conventional PP/glass fibers composites for injection molding of small to medium auto parts. 相似文献
9.
This work studies the possibility of compounding natural fibres (flax) into engineering plastics (PA6 and PB6) and comparing the results with counterpart glass fibre composites. The problem in compounding is the difficulty to compound the fibres with such polymers of high melting temperatures without decomposing the natural fibre thermally. Preliminary experiments are tried to define the possible processing window using the kneader namely temperature, compounding time and shear rate. Fibre content is tried in range of 0–50 wt.% with 10% step. The mixing temperature covers the range around the melting temperature ‘Tm’ [Tm−20, Tm+20]°C. The use of pre-melting temperature in compounding would utilise the energy evolving by fibres mutual rubbing. Compounding time is optimised at the minimum level. Shearing rate is tried at 25, 50, 75 and 100 rpm. Optimum conditions are defined to be 210–230 °C and 200–210 °C for PBT and PA6 respectively. Shearing rate is also defined to lie within 25–50 rpm.Two different additives of non-organic mineral and organic phosphate flame retardants are tried with the prepared composites either alone or in combination with each other. The loading of flame retardants is limited to 20 wt.% in order to leave a space for natural fibres as well as the polymer and to keep in turn the overall composite mechanical properties. A mix of 1:1 ratio between the both types of retardants is needed to reach V0 flame retardation level. Mechanical properties are even improved 30% in E-modulus and 4% in strength with respect to composites without flame retardants. However, the injection moulding is reported to be difficult because of the high viscosity and the parameters should be optimised regarding the desired flame retardance level and the required mechanical properties as well as keeping the fibres not damaged. 相似文献
10.
The aim of present work was to study the effect of adding garnet and fly ash on the physical and mechanical performance of Al7075 hybrid composites. Al7075 hybrid composites reinforced with varying weight percentage (0 wt.%–15 wt.%) of each of garnet and fly ash were fabricated and characterized for the comparative assessment of their physical and mechanical properties. The physical and mechanical tests such as void content test, hardness test, tensile strength test, impact strength tests, flexural and fracture toughness test were performed for both garnet and fly ash reinforced composites. The finding of results indicated that the addition of 0 wt.%–15 wt.% of garnet increased the void content, hardness, flexural strength, tensile strength, impact strength and fracture toughness in the range of 1.01 %–2.69 %, 33 HRB–88 HRB, 165 MPa–275 MPa, 205 MPa–263 MPa, 12 J–22 J and 0.11 MPa ? m1/2–0.58 MPa ? m1/2 at crack length 0.1 respectively whereas addition of 0 wt.%–15 wt.% of fly ash increased the void content, hardness test, flexural strength, tensile strength, impact strength and fracture toughness in the range of 1.010 %–1.351 %, 33 HRB‐80 HRB, 165 MPa–225 MPa, 205 MPa–236 MPa, 12 J–20 J, 0.11 MPa ? m1/2–0.48 MPa ? m1/2 at crack length 0.1 respectively. Apart from the economic concern and void issue, Garnet indicated better choice of reinforcement as compared to fly ash in terms of mechanical properties. 相似文献
11.
Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues 总被引:2,自引:0,他引:2
Youssef Habibi Waleed K. El-Zawawy Maha M. Ibrahim Alain Dufresne 《Composites Science and Technology》2008,68(7-8):1877-1885
Lignocellulosic fibers were extracted from Egyptian industrial crops, viz. cotton stalk, rice straw, bagasse, and banana plant waste. The chemical composition of these fibers was determined. Composite materials were processed from these natural lignocellulosic fibers using low density polyethylene and acid stearic as compatibilizer, or maleated low density polyethylene. The thermal and mechanical properties were studied by differential scanning calorimetry (DSC) and tensile tests, respectively. The morphology of processed composites was studied by scanning electronic microscopy (SEM). Better compatibility and enhanced mechanical properties were obtained when using maleated LDPE as compatibilizer. The chemical composition of fibers, in terms of lignin, cellulose and hemicelluloses contents, was found to have a strong influence on the mechanical properties of the composites. 相似文献
12.
P.A. Sreekumar Jean Marc SaiterKuruvilla Joseph G. UnnikrishnanSabu Thomas 《Composites Part A》2012,43(3):507-511
The electrical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding (RTM) have been studied with special reference to fiber loading, frequency and temperature. The dielectric constant (ε′), loss factor (ε″), dissipation factor (tan δ) and conductivity increases with fiber content for the entire range of frequencies. The values are high for the composites having fiber content of 50 vol.%. This increment is high at low frequencies, low at medium frequencies, and very small at high frequencies. The volume resistivity varies with fiber loading at lower frequency and merges together at higher frequency. When temperature increases the dielectric constant values increases followed by a decrease after the glass transition temperature. This variation depends upon the fiber content. Finally an attempt is made to correlate the experimental value of the dielectric constant with theoretical predictions. 相似文献
13.
采用高载动态热机械分析仪EPLEXOR500对T300/S-2混杂纤维增强环氧树脂复合材料的动态黏弹特性进行了分析, 考察了静态载荷、 动态载荷对其储能模量、 损耗模量和损耗角正切的影响, 并研究和对比了不同载荷水平下混杂比以及混杂方式对动态黏弹性参数的影响规律。结果表明: 不同混杂比复合材料的储能模量均随动态载荷的增大而降低, 随静态载荷的增大而增大, 损耗模量和损耗角正切则随两种载荷的增大而降低。高载荷下混杂复合材料的储能模量仍较好地符合"复合梁理论"。动载扫描模式下, 损耗角正切随混杂比的变化基本符合"混合定律", 夹芯混杂复合材料的储能模量远高于层间混杂复合材料, 且损耗角正切也比层间混杂时大; 但在静载扫描模式下则是层间混杂复合材料的损耗角正切更大。 相似文献
14.
Effect of short glass fibers on the mechanical properties of cast ZA-27 alloy composites 总被引:2,自引:0,他引:2
This paper aims to study the effects of short glass fiber reinforcement on the mechanical properties of cast ZA-27 zinc alloy composites containing glass fibers of content ranging from 0% to 5% by weight. The composites were fabricated using the ‘compocasting’ method in which the short glass fibers were introduced into the vortex created in the molten alloy through an impeller rotated at 500 rev./min. The molten mass was thoroughly stirred, poured into permanent moulds and squeeze-cast under pressure. The results of this study revealed that as glass fiber composition was increased, there were significant increases in the ultimate tensile strength (UTS), hardness and Young's modulus, accompanied by a reduction in its ductility and impact strength. An attempt is made in this article to provide explanations for these phenomena. 相似文献
15.
This article explores multiple effects of nano-SiO2 and hybrid fibers on the flowability, microstructure and flexural properties of high toughness fiber reinforced cementitious composites. Only a little negative influences of nano-SiO2 and hybrid fibers on the flowability are observed. SEM and MIP analysis reveal that nano-SiO2 results in much smaller pore size in the composites. However, the porosity increases gradually with nano-SiO2 addition. Three-point bending test results show that nano-SiO2 increases the flexural strength of the composites with nearly equivalent deformability, but higher strength of the matrix leads to wider cracks. Due to larger volume fraction and higher modulus, hybrid fibers effectively mitigate this adverse influence on crack width and further enhance the flexural strength. The composites reinforced with 1.4% steel fiber and 2.5% polyvinyl alcohol (PVA) fiber exhibit the best flexural properties in the test. Finally, a simplified model is proposed to illustrate the reinforced mechanism of steel-PVA fibers. 相似文献
16.
The advent of graphene heralded by the recent studies on carbon based conducting polymer composites has been a motivation for the use of graphene as an electromagnetic interference (EMI) shielding material. One of the variants of graphene, graphene nanoribbon (GNR) shows remarkably different properties from graphene. The EMI shielding effectiveness of the composite material mainly depends on fillers’ intrinsic conductivity, dielectric constant and aspect ratio. We have synthesized graphene nanoribbon (GNR) – Polyaniline (PANI) – epoxy composite film for effective shielding material in the X-band frequency range of 8.2–12.4 (GHz). We have performed detailed studies of the EMI shielding effect and the performance of the composite and found that the composite shows ∼−40 dB shielding which is sufficient to shield more than 95% of the EM waves in X Band. We checked the shielding effectiveness of the composite film by varying the GNR percentage and the thickness of the film. The strength properties of the synthesized composited were also studied with a aim to have a material having both high strength and EMI shielding properties. 相似文献
17.
This study examined the feasibility of using polybutene-1 (PB-1), a ductile plastic, as a matrix for manufacturing wood plastic composites (WPCs) with improved toughness and ductility compared to currently commercialized WPCs. The processability, tensile, flexural, and impact properties of injection molded PB-1/wood-flour composite samples with varying proportions of wood flour were characterized. Analysis also included the morphology of fractured samples surface and adhesion between the polymer and wood flour using SEM. Comparisons of the mechanical properties and adhesion in the PB-1 composites to those of HDPE and PP-based WPCs found the composites made with PB-1 matrix significantly inferior in strength and stiffness (both in tensile and flexural) than their counterparts made of HDPE and PP matrices. In contrast, the processability, elongation at break, impact strength and adhesion in PB-1/wood-flour composites, superior to those of HDPE and PP, confirmed their suitability for use as a matrix in composites intended for applications subjected to high impacts. 相似文献
18.
Laminates, composed of different papers and polypropylene (PP), were fabricated by a manual stacking and hot pressing. The laminates were characterized by mechanical testing and the results were compared to glass fiber reinforced PP. Furthermore, a detailed evaluation of the interfacial properties and the paper structures was carried out by means of data modeling via rule of mixtures (ROM), as well as electron microscope (SEM) analysis. For investigating the influence of the laminate’s composition on the water adsorption behavior, water diffusion coefficients were determined. As a result, laminates with a tensile modulus up to 6 GPa and a tensile strength of 80 MPa were obtained. The property changes of the papers upon processing were successfully modeled, revealing a significant increase of the paper’s mechanical properties after fiber embedding. In general, the obtained results indicate a high potential of paper as a suitable reinforcement material for low to middle strained applications. 相似文献
19.
亚麻落麻纤维增强可降解复合材料的拉伸强度预测 总被引:4,自引:1,他引:4
采用非织造结合热压成型工艺制备了亚麻落麻纤维增强聚乳酸(PLA)基可降解复合材料(亚麻落麻/PLA),研究了纤维体积分数对材料拉伸强度的影响,并利用 Kelly-Tyson拉伸强度预测模型及相关修正理论,提出了非连续植物纤维增强可降解复合材料(D-NFRBC)强度预测模型,该模型考虑了纤维长度、取向角、直径、强度概率分布及材料界面剪切强度与材料中纤维临界长度、纤维极限拉伸强度三者间制约关系对复合材料强度的影响。结果表明;亚麻落麻/PLA拉伸强度在纤维体积分数为39.6%时达到最大,应用本文建立的强度预测模型所得亚麻落麻/PLA拉伸强度预测值与实验值吻合良好。 相似文献
20.
This paper presents the research on hybrid thermoplastic biocomposites reinforced with a combination of short man-made cellulose fibres and softwood flour. The introduced short fibre composites are meant to be processed with injection moulding and may be an alternative to glass-fibre reinforced thermoplastics on account of their comparable specific strengths. The occurring positive hybrid effect enables to substitute up to half the weight of short fibre cellulose reinforcement with softwood flour without a significant reduction of material flexural strength. The flexural modulus of investigated hybrid biocomposites remained approximately at the same level, while impact strength was reduced with increasing softwood flour content. The proposed hybridisation leads to establishing biocomposites of suitable performance with competitive density, price and recycling possibilities in comparison to standard glass fibre reinforced counterparts. Moreover, the application of biobased polymers like polylactide as biocomposite matrix, contributes to the development of so called “green” high performance materials. 相似文献