首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic digestion plants have the potential to produce biogas on demand to help balance renewable energy production and energy demand by consumers. A proportional integral (PI) controller is constructed and tuned with a novel tuning method to control biogas production in an optimal manner. In this approach, the proportional part of the controller is a function of the feeding rate and system's degree of stability. To estimate the degree of stability, a simulation-based soft sensor is developed. By means of the PI controller, the requirement for gas storage capacity of the digester is reduced by approximately 30 % compared to a constant, continuous feeding regime of the digester.  相似文献   

2.
This article presents a fleet‐wide model for energy planning that can be used to determine the optimal structure necessary to meet a given CO2 reduction target while maintaining or enhancing power to the grid. The model incorporates power generation as well as CO2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear, and wind). The model is formulated as a mixed integer program and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO2 reduction target and electricity demand at a minimum overall cost. The model was applied to the energy supply system operated by Ontario power generation (OPG) for the province of Ontario, Canada. In 2002, OPG operated 79 electricity generating stations; 5 are fueled with coal (with a total of 23 boilers), 1 by natural gas (4 boilers), 3 nuclear, 69 hydroelectric and 1 wind turbine generating a total of 115.8 TWh. No CO2 capture process existed at any OPG power plant; about 36.7 million tonnes of CO2 was emitted in 2002, mainly from fossil fuel power plants. Four electricity demand scenarios were considered over a span of 10 years and for each case the size of new power generation capacity with and without capture was obtained. Six supplemental electricity generating technologies have been allowed for: subcritical pulverized coal‐fired (PC), PC with carbon capture (PC+CCS), integrated gasification combined cycle (IGCC), IGCC with carbon capture (IGCC+CCS), natural gas combined cycle (NGCC), and NGCC with carbon capture (NGCC+CCS). The optimization results showed that fuel balancing alone can contribute to the reduction of CO2 emissions by only 3% and a slight, 1.6%, reduction in the cost of electricity compared to a calculated base case. It was found that a 20% CO2 reduction at current electricity demand could be achieved by implementing fuel balancing and switching 8 out of 23 coal‐fired boilers to natural gas. However, as demand increases, more coal‐fired boilers needed to be switched to natural gas as well as the building of new NGCC and NGCC+CCS for replacing the aging coal‐fired power plants. To achieve a 40% CO2 reduction at 1.0% demand growth rate, four new plants (2 NGCC, 2 NGCC+CCS) as well as carbon capture processes needed to be built. If greater than 60% CO2 reductions are required, NGCC, NGCC+CCS, and IGCC+CCS power plants needed to be put online in addition to carbon capture processes on coal‐fired power plants. The volatility of natural gas prices was found to have a significant impact on the optimal CO2 mitigation strategy and on the cost of electricity generation. Increasing the natural gas prices resulted in early aggressive CO2 mitigation strategies especially at higher growth rate demands. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

3.
With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind and solar that deliver electricity to the grid.Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues are identified and specified. However, we will also explore new solution directions based on an integrative approach as proposed by the Dutch Royal Academy of Science foresight committee on renewable energy conversions. These alternative solutions include flexible coproduction and local production of chemicals and fuel that can also fulfill a storage function.  相似文献   

4.
Achieving net zero carbon dioxide (CO2) emissions will require the cessation of fossil fuel emissions into the atmosphere, yet the need for ‘fuel’ and energy storage will remain. One solution could be a carbon-based fuel system where CO2 of biogenic origin is converted to fuels using hydrogen generated by electrolysis powered by renewable energy sources. Methane has value as an initial target given its prevalence in biogas, use in home heating and in electricity generation. Sources of CO2 in Eastern Canada are dominated by the iron and steel, cement, and aluminium industries, all of which have biogenic fuel options. Collecting all of the potentially biogenic CO2 would displace 75% of current natural gas use and require a 50% increase in generating capacity. Initial efforts could site a carbon capture, utilization, and storage facility near Montreal, QC, with other large-scale facilities near Hamilton, ON, and Lac St-Jean, QC. These facilities would be grid connected and expected to operate ~6200 h annually. The most high-frequency electrolysis events would be 10 h of run time and 2 h of idle time. These periods would peak during the equinox months and be at a minimum during the winter solstice. These operational assumptions will all be subject to the increased variability caused by anthropogenic climate change and increased renewable generation on the grid. A closed-loop carbon-based fuel system would require an equivalent price of $250 per tonne CO2.  相似文献   

5.
Sugarcane bagasse and trash are used as fuels in cogeneration systems for bioethanol production, supplying steam and electricity, but may also be used as feedstock for second generation ethanol. The amount of surplus lignocellulosic material used as feedstock depends on the energy consumption of the production process; residues of the pretreatment and hydrolysis operations (residual cellulose, lignin and eventually biogas from pentoses biodigestion) may be used as fuels and increase the amount of lignocellulosic material available as feedstock in hydrolysis. The configuration of the cogeneration system (boiler pressure, lignocellulosic material consumption and steam production, turbines efficiencies, among others) has a significant impact on consumption of fuel and electricity output; in the integrated first and second generation, it also affects overall ethanol production. Simulations of the integrated first and second generation ethanol production processes were carried out using Aspen Plus, comparing different configurations of the cogeneration systems and pentoses use (biodigestion and fermentation). Economic analysis shows that electricity sale can benefit second generation ethanol, even in relatively small amounts. Environmental analysis shows that the integrated first and second generation process has higher environmental impacts in most of the categories evaluated than first generation.  相似文献   

6.
The potential of combining biogas and photovoltaic (PV) power plants in hybrid systems in the German distribution grid is analyzed. The focus of the present research is on balancing the intermittent power supply from PV power plants with the controllable power production of combined heat and power (CHP) units of biogas plants within a period of seconds. To achieve an increase of the total energy feed-in of biogas and PV power plants to the electricity grid, a biogas plant energy management system is described. System parameters, such as the variable feed-in of PV power plants or power ramps of the start-up process of controllable biogas plant CHP unit, are described and adapted to the global installed capacity of PV power plant and biogas plants in the German distribution grid.  相似文献   

7.
利用微生物燃料电池同步降解沼液和三苯基氯化锡   总被引:2,自引:1,他引:1       下载免费PDF全文
微生物燃料电池(MFC)作为一种同步产电和除污的新型电化学装置,为有效处理难降解有机污染物提供了一种途径。基于阴极Fenton反应,提出了一种耦合典型双室MFC中阳极沼液产电及阴极降解有机锡的新方法。结果表明,阳极产电生物膜经驯化后MFC的最高电压提高了50.32%,而且电压稳定时间延长了1倍。MFC运行结束后,阳极沼液COD、总氮、总磷的去除率分别为85.35%±1.53%、59.20%±5.24%、44.98%±3.57%。阴极三苯基氯化锡(TPTC)的降解率随其初始浓度增加而降低。在添加100 μmol·L-1 TPTC时,MFC的最高输出电压为280.2 mV,最大功率密度为145.62 mW·m-2。TPTC在14 d后完全降解,降解效率为91.88%,降解速率约为0.273 μmol·L-1·h-1。研究结果可为利用MFC同步处理阳极有机废水和阴极有机污染物的实际应用提供基础支持。  相似文献   

8.
以沼液为原料的微生物燃料电池产电降解特性   总被引:3,自引:2,他引:1       下载免费PDF全文
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kW,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

9.
Renewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.  相似文献   

10.
ABSTRACT

A mathematical model of a tunnel dryer for the dehydration of grapes is presented and applied to the determination of optimal operating conditions of the dryer. The dryer is of semi-batch structure, operating with trucks and trays. The cycle period is determined by meeting appropriate quality specifications for the final product. The nominal conditions were evaluated bv suitably minimizing. the total fuel demand, expressed as fuel consumption to production capacity, under some constraints regarding the production rate of the dryer and the maximum permissible air temperature. An nominal air humidity value was evaluated suggesting a minimum cycle period value for the production capacity and fuel demand. The nominal conditions required operation of the dryer on the maximum permissible air temperature. The optimum operation was evaluated by maximizing the total profit resulting from the operation of the dryer. The optimization variables were temperature and humidity of the drying air stream. A charteristic case study of industrial grape was included to illustrate the effectiveness of the proposed approach.  相似文献   

11.
The feasibility of operating a solid oxide fuel cell (SOFC) on biogas has been studied over a wide compositional range of biogas, using a small tubular solid oxide fuel cell system operating at 850 °C. It is possible to run the SOFC on biogas, even at remarkably low levels of methane, at which conventional heat engines would not work. The power output varies with methane content, with maximum power production occurring at 45% methane, corresponding to maximal production of H2 and CO through internal dry reforming. Direct electrocatalytic oxidation of methane does not contribute to the power output of the cell. At higher methane contents methane decomposition becomes significant, leading to increased H2 production, and hence transiently higher power production, and deleterious carbon deposition and thus eventual cell deactivation.  相似文献   

12.
This work investigates how the flexible operation of the light industrial plants integrated in a cross-sector energy cluster with community energy systems can achieve further greenhouse gas (GHG) reductions under uncertainties associated with natural gas prices, solar irradiation, as well as heating, cooling, and electricity demand. The optimal flexible operation and design of a cross-sector integrated cluster comprising a bakery plant, a brewery, a confectionery plant, a residential building, and a supermarket under uncertainties are compared to the operation and design of systems without uncertainties. When uncertainties are considered, the overall GHG emissions of the integrated system with steady industrial production rates for all uncertainty scenarios are over 4% higher than the integrated system in the deterministic scenario (a single scenario). Flexible operation of the industrial plants, whereby production rates are varied throughout the day, contributes an additional 3% reduction in GHG emissions under uncertainties, where the GHG emissions are only 1% higher than the deterministic scenario. Additionally, the system with flexible production rates purchases over 14.3% less electricity from the grid and uses over 72.2% less natural gas for operating the backup boiler, which relies less on supplementary energy resources. This shows that optimally designed integrated systems with flexible industry production schedules are resilient to uncertainties in energy demands, daily weather fluctuations, and fuel prices.  相似文献   

13.
采用双室微生物燃料电池(MFC),以乳酸菌为产电微生物,并以葡萄糖为唯一的电子供体,研究MFC的产电性能以及乳酸菌MFC产电机理。在30 ℃下,底物浓度为1.5 g/L时,该MFC的开路电压稳定在500 mV。实验条件下测得该MFC的最大功率密度为393.23 mW/m2,内阻约为500 Ω。利用气相色谱分析乳酸菌MFC产电过程中代谢产物的含量变化,实验数据表明无论是不参与产电的正常代谢途径还是产电过程中,都涉及到乳酸菌的同型乳酸发酵途径、异型乳酸发酵的经典途径和双歧杆菌发酵途径。在乳酸菌MFC运行过程中人为添加乙醇,该实验结果显示乙醇不利于乳酸菌产电,表明乳酸菌的异型乳酸发酵途径是乳酸菌进行产电的关键代谢途径。  相似文献   

14.
A mathematical model of a tunnel dryer for the dehydration of grapes is presented and applied to the determination of optimal operating conditions of the dryer. The dryer is of semi-batch structure, operating with trucks and trays. The cycle period is determined by meeting appropriate quality specifications for the final product. The nominal conditions were evaluated bv suitably minimizing. the total fuel demand, expressed as fuel consumption to production capacity, under some constraints regarding the production rate of the dryer and the maximum permissible air temperature. An nominal air humidity value was evaluated suggesting a minimum cycle period value for the production capacity and fuel demand. The nominal conditions required operation of the dryer on the maximum permissible air temperature. The optimum operation was evaluated by maximizing the total profit resulting from the operation of the dryer. The optimization variables were temperature and humidity of the drying air stream. A charteristic case study of industrial grape was included to illustrate the effectiveness of the proposed approach.  相似文献   

15.
The generation of electrical energy from biogas is state of the art. One option is the application of fuel cells for generating electrical energy. Due to their construction, the materials used and their mode of operation, solid oxide fuel cells (SOFCs) are particularly suitable. The primary problem in the operation of SOFCs using biogas is H2S. The goal of this work is to investigate the possible effects of ammonia on different sorbents that have already successfully been used for the desulfurization of biogas. The H2S adsorption capacity of four commercially available sorbents in the presence of NH3 was investigated as well as the influence of an upstream NH3 removal. The CuO‐MnO‐based sorbent showed the best performance related to sulfur uptake.  相似文献   

16.
A techno-economic analysis was performed for a biogas plant with in-built algae production. Degradation in the fermenter occurs under mesophilic conditions, to produce 605 Nm3t−1TS of biogas and 343 Nm3t−1TS of methane after 50 days. The biogas was combusted in a combined heat-and-power unit to produce heat and electricity. Cultivation of Chlorella vulgaris was done in co-annular photo-bioreactors, with an annual productivity of 107.5 t. For cultivation, both autotrophic and mixotrophic growth were assumed. Detailed mass and energy balances were done. For both conditions of algae growth, the results are approximately the same after a 30-year payback period.  相似文献   

17.
Biomass, a source of renewable energy, represents an effective substitute to fossil fuels. Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g. biogas). In this work, the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H_2,CH_4, CO,and CO_2, which were then be used as the fuel for solid oxide fuel cell(SOFC). Planar SOFCs were fabricated and adopted. The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I–V polarization and electrochemical impedance spectra characterizations. An excellent cell performance was obtained, for example,the peak power density of the SOFC reached 1391 mW·cm~(-2) at 750℃ when the generated biogas was used as the fuel. Furthermore, the SOFC fuelled by simulated biogas delivered a very stable operation.  相似文献   

18.
How can we improve the energy balance of ethanol production from wheat?   总被引:1,自引:0,他引:1  
Jerry D. Murphy  Niamh M. Power 《Fuel》2008,87(10-11):1799-1806
The gross energy in ethanol using wheat as a feedstock in Ireland is 66 GJ/ha/a. The net energy production is 25 GJ/ha/a. A model is proposed, whereby the ethanol production process is combined with combustion of straw, and digestion of stillage, resulting in two transport fuels; ethanol and biomethane. In the proposed system stillage is not dried, reducing the thermal demand by 35%. A quarter of the straw associated with the wheat grain is sufficient, when combusted, to satisfy the reduced thermal demands. Stillage is digested wet; the biogas is scrubbed, compressed and utilised as a transport fuel. The net energy now is 72 GJ/ha/a. The production cost of biomethane is two thirds that of ethanol.  相似文献   

19.
热电联产及其燃气轮机蒸汽联合循环   总被引:1,自引:0,他引:1  
陈本刚 《化肥设计》2004,42(6):55-57
阐述了各种热电联产及燃气轮机蒸汽联合循环的形式、适用燃料及效率,介绍了燃气轮机联合循环发电及供热在我国合成氨厂的应用,指出燃气-蒸汽联合循环热电联产将是热电联产的发展方向。  相似文献   

20.
Demand response (DR) can compensate for imbalances in variable renewable energy supplies. This possibility is particularly interesting for electrochemical processes, due to their high energy intensity. To determine the technical feasibility and economic viability of DR, we chose the chlor-alkali process with subsequent polyvinyl chloride production, including intermediate storage for ethylene dichloride. We estimate the maximum possible cost savings of implementing load flexibility measures. A process model is set up to determine the system characteristic. Subsequent optimizations result in the facility's best possible dispatch depending on additional and minimum power load, storage volume, and cost of a load change. Real plant data are used to specify model parameters and validate the system characteristic and the plant dispatch. An economic evaluation reveals the economic advantages of efficiency and flexibility. The approach can be used to analyze the DR potential of other chlorine value chains or facilities with high electricity demand in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号