首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A well-functioning supply chain management relationship cannot only develop seamless coordination with valuable members, but also improve operational efficiency to secure greater market share, increased profits and reduced costs. An accurate decision-making system considering multifactor relationship quality is highly desired. This study offers an alternative perspective and characterisation of the supply chain relationship quality and performance. A decision-making model is proposed with an artificial neural network approach for supply chain continuous performance improvement. Supply chain performance is analysed via a supervised learning back-propagation neural network. An ‘inverse’ neural network model is proposed to predict the supply chain relationship quality conditions. Optimal performance parameters can be obtained using the proposed neural network scheme, providing significant advantages in terms of improved relationship quality. This study demonstrates a new solution with the combination of qualitative and quantitative methods for performance improvement. The overall accuracy rate of the decision-making model is 88.703%. The results indicated that trust has the greatest influence on the supply chain performance. Relationship quality among supply chain partners impacts performance positively as the pace of technological turbulence increases.  相似文献   

2.
人工神经网络在材料科学中的应用与展望   总被引:8,自引:1,他引:8  
人工神经网络因其具有较强的非线性问题处理能力且容错性强而在材料科学中得到广泛的应用.本文对其在材料设计、材料制备工艺优化、塑性加工、热处理等领域的应用进行了探讨,并对其发展前景进行了展望.  相似文献   

3.
The present paper describes the application of artificial neural networks for estimating the finite-life fatigue strength and fatigue limit. A comprehensive database with results of single-stage tests on specimens which simulate structural components is evaluated and prepared for processing with the use of neural networks. The available data are subdivided into different classes. A total of six different data classes are specified. The results of the prediction by means of neural networks are superior to those obtained with conventional methods for calculating the fatigue strength. The experimental results are estimated with high accuracy.  相似文献   

4.
Supply chain risk management (SCRM) encompasses a wide variety of strategies aiming to identify, assess, mitigate and monitor unexpected events or conditions which might have an impact, mostly adverse, on any part of a supply chain. SCRM strategies often depend on rapid and adaptive decision-making based on potentially large, multidimensional data sources. These characteristics make SCRM a suitable application area for artificial intelligence (AI) techniques. The aim of this paper is to provide a comprehensive review of supply chain literature that addresses problems relevant to SCRM using approaches that fall within the AI spectrum. To that end, an investigation is conducted on the various definitions and classifications of supply chain risk and related notions such as uncertainty. Then, a mapping study is performed to categorise existing literature according to the AI methodology used, ranging from mathematical programming to Machine Learning and Big Data Analytics, and the specific SCRM task they address (identification, assessment or response). Finally, a comprehensive analysis of each category is provided to identify missing aspects and unexplored areas and propose directions for future research at the confluence of SCRM and AI.  相似文献   

5.
In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.  相似文献   

6.
Additive Manufacturing (AM) requires integrated networking, embedded controls and cloud computing technologies to increase their efficiency and resource utilisation. However, currently there is no readily applicable system that can be used for cloud-based AM. The objective of this research is to develop a framework for designing a cyber additive manufacturing system that integrates an expert system with Internet of Things (IoT). An Artificial Neural Network (ANN) based expert system was implemented to classify input part designs based on CAD data and user inputs. Three ANN algorithms were trained on a knowledge base to identify optimal AM processes for different part designs. A two-stage model was used to enhance the prediction accuracy above 90% by increasing the number of input factors and datasets. A cyber interface was developed to query AM machine availability and resource capability using a Node-RED IoT device simulator. The dynamic AM machine identification system developed using an application programme interface (API) that integrates inputs from the smart algorithm and IoT interface for real-time predictions. This research establishes a foundation for the development of a cyber additive design for manufacturing system which can dynamically allocate digital designs to different AM techniques over the cyber network.  相似文献   

7.
8.
A study on various artificial neural network (ANN) algorithms for selecting a best suitable algorithm for diagnosing the transients of a typical nuclear power plant (NPP) is presented. NPP experiences a number of transients during its operations. These transients may be due to equipment failure, malfunctioning of process systems, etc. In case of any undesired plant condition generally known as initiating event (IE), the operator has to carry out diagnostic and corrective actions. The objective of this study is to develop a neural network based framework that will assist the operator to identify such initiating events quickly and to take corrective actions. Optimization study on several neural network algorithms has been carried out. These algorithms have been trained and tested for several initiating events of a typical nuclear power plant. The study shows that the resilient-back propagation algorithm is best suitable for this application. This algorithm has been adopted in the development of operator support system. The performance of ANN for several IEs is also presented.  相似文献   

9.
This paper focuses on developing empirical models for predicting surface roughness, tool wear and power required in turning operations. These response parameters are mainly dependent upon cutting velocity, feed and cutting time. Three competing data mining techniques, response surface methodology (RSM), artificial neural networks (ANN) and support vector regression (SVR), are applied in developing the empirical models. The data of 27 experiments have been used to generate, compare and evaluate the proposed models of tool wear, power required and surface roughness for the selected tool/material combination. Testing results demonstrate that the models developed in this research are suitable for predicting the response parameters with a satisfactory goodness of fit. It has been found that ANN and SVR models are much better than regression and RSM models for predicting the three response parameters. Finally, some future research directions are outlined.  相似文献   

10.
Artificial neural networks and the Levenberg–Marquardt algorithm are combined to calculate the thickness and refractive index of thin films from spectroscopic reflectometry data. Two examples will be discussed, the first is a measurement of thickness and index of transparent films on silicon, and the second is a measurement of three thicknesses and index of poly-silicon in a rough poly-silicon on oxide stack. A neural network is a set of simple, highly interconnected processing elements imitating the activity of the brain, which are capable of learning information presented to them. Reflectometry has been used by the semiconductor industry to measure thin film thickness for decades. Modeling the optical constants of a film in the visible region with a Cauchy dispersion model allows the determination of both thickness and refractive index of most transparent thin films from reflectance data. The use of an alloy interpolation model for the optical constants of poly-silicon allows the determination of thicknesses and poly optical constants. In this work artificial neural networks are used to obtain good initial estimates for thickness and dispersion model parameters, these estimates are then used as the starting point for the Levenberg–Marquardt algorithm which converges to the final solution in a few iterations. These measurement programs were implemented on a Nanometrics NanoSpec 8000XSE.  相似文献   

11.
一类神经网络逼近可积函数   总被引:2,自引:2,他引:0  
用连续模刻画了实轴上Cardaliguet-Eurrard型神经网络算子逼近连续函数速度的上界估计,同时,对于Lebesgue可积函数的逼近,构造相应的神经网络算子,并且给出其逼近速度的Jackson型估计.  相似文献   

12.
This paper presents the work carried out towards developing a diagnostic system for the identification of accident scenarios in 220 MWe Indian PHWRs. The objective of this study is to develop a methodology based on artificial neural networks (ANNs), which assists in identifying a transient quickly and suggests the operator to initiate the corrective actions during abnormal operations of the reactor. An operator support system, known as symptom-based diagnostic system (SBDS), has been developed using ANN that diagnoses the transients based on reactor process parameters, and continuously displays the status of the reactor. As a pilot study, the large break loss of coolant accident (LOCA) with and without the emergency core cooling system (ECCS) in reactor headers has been considered. Several break scenarios of large break LOCA have been analyzed. The time-dependent transient data have been generated using the RELAP5 thermal hydraulic code assuming an equilibrium core, which conforms to a realistic estimation. The diagnostic results obtained from the ANN study are satisfactory. These results have been incorporated in the SBDS software for operator assistance. A few important outputs of the SBDS have been discussed in this paper.  相似文献   

13.
14.
The bullwhip effect (BWE) is a phenomenon, which is caused by ineffective inventory decisions made by supply chain members. In addition to known inefficiencies caused by the bullwhip effect within a supply chain product flow, such as excessive inventory, it can also lead to inefficiencies in cash flow such as the cash flow bullwhip (CFB). The CFB reduces the efficiency of the supply chain (SC) through heterogeneous distribution of cash among supply chain members. This paper aims to decrease both the BWE and the CFB across a SC through applying a simulation-based optimisation approach, which integrates system dynamics (SD) simulation and genetic algorithms. For this purpose, cash flow modelling is incorporated into the SD structure of the beer distribution game (BG) to develop the CFB function. A multi objective optimisation model is then integrated with the SD-BG simulation model. Finally, a genetic algorithm (GA) is applied to determine the optimal values for the inventory, supply line, and financial decision parameters. Results show that the proposed integrated framework leads to efficient liquidity management in the SC in addition to cost management.  相似文献   

15.
The size and training parameters of artificial neural networks have a critical effect on their performance. This paper presents the application of the Taguchi Design of Experiments (DoEs) off‐line quality control method in the optimization of the design parameters of a neural network. Being a ‘parallel’ approach, the method offers considerable benefits in time and accuracy when compared with the conventional serial approach of trial and error. The use of the Taguchi method ensures that the quality of the neural network is taken into account at the design stage. The interpretation of the experimental results is based on the statistical technique known as analysis of variance (ANOVA). The signal‐to‐noise ratio (S/N) is used in designing a robust neural network that is less sensitive to noise. The effect of design parameters and neural network behaviour are also revealed as a result. Although a Wood Veneer Inspection Neural Network (WVINN) is the particular application presented here, the design methodology can be applied to neural networks in general. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
黄进 《标准科学》2017,(4):33-38
近年来,供应链与环境问题的相关性正日益增加,绿色供应链管理越来越受到公众各界的高度关注,标准化对于相关政策制度的实施也起到越来越重要的支撑作用,由此引发了我们关于贯彻实施环境管理体系标准如何助力绿色供应链管理的诸多思考.本文综述了国内外绿色供应链管理政策和标准发展历程,提出了实施环境管理体系标准要求助力绿色供应链管理相关政策制度实施的实践重点和建议.  相似文献   

17.
为快速、无损的判别鲜叶产地,维护恩施玉露的地理标志产品属性,采集恩施市芭蕉乡、白果乡和咸丰县茶鲜叶近红外光谱,经光谱预处理后,对校正集66个样品光谱数据进行主成分分析,然后建立BP神经网络预测模型,对验证集鲜叶样品的产地进行了预测,建立了8(输入节点)-4(隐含层节点)-1(输出节点)三层网络模型,验证集样品判别准确率为100%.近红外光谱技术结合神经网络能够快速、准确地判别茶鲜叶产地.  相似文献   

18.
This work aimed to use artificial neural networks for fruit classification according to olive cultivar, as a tool to guarantee varietal authenticity. So, 70 samples, each one containing, in general, 40 olives, belonging to the six most representative olive cultivars of Trás-os-Montes region (Cobrançosa, Cordovil, Madural, Negrinha de Freixo, Santulhana and Verdeal Transmontana) were collected in different groves and during four crop years. Five quantitative morphological parameters were evaluated for each fruit and endocarp, respectively. In total, ten biometrical parameters were used together with a multilayer perceptron artificial neural network allowing the implementation of a classification model. Its performance was compared with that obtained using linear discriminant analysis. The best results were obtained using artificial neural networks. In fact, the external validation procedure for linear discriminant analysis, using olive data from olive trees not included in the model development, showed an overall sensibility and specificity in the order of 70% and varying between 45 and 97% for the individual cultivars. On the other hand, the artificial neural network model was able to correctly classify the same unknown olives with a global sensibility and specificity around 75%, varying from 58 and 95% for each cultivar. The predictive results of the artificial neural network model selected was further confirmed since, in general, it correctly or incorrectly classified the unknown olive fruits in each one of the six cultivars studied with, respectively, higher and lower probabilities than those that could be expected by chance. The satisfactory results achieved, even when compared with previous published works, regarding olive cultivar's classification, show that the neural networks could be used by olive oil producers as a preventive and effective tool for avoiding adulterations of Protected Designation of Origin or monovarietal olive oils with olives of non-allowed cultivars.  相似文献   

19.
The presented work deals with the application of artificial neural networks in the modelling of the thermal decomposition process of friction composite systems based on polymer matrices reinforced by yarns. The thermal decomposition of the automotive clutch friction composite system consisting of a polymer blend reinforced by yarns from organic, inorganic and metallic fibres impregnated with resin, as well as its individual components, was monitored by a method of non‐isothermal thermogravimetry over a wide temperature range. A supervised feed‐forward back‐propagation multi‐layer artificial neural network model, with temperature as the only input parameter, has been developed to predict the thermogravimetric curves of weight loss and time derivative of weight loss of studied friction composite system and its individual components acquired at a fixed constant heating rate under a pure dry nitrogen atmosphere at a constant flow rate. It has been proven that an optimized model with a 1‐25‐6 architecture of an artificial neural network trained by a Levenberg‐Marquardt algorithm is able to predict simultaneously all the analyzed experimental thermogravimetric curves with a high level of reliability and that it thus represents the highly effective artificial intelligence tool for the modelling of thermal stability also of relatively complicated friction composite systems.  相似文献   

20.
There is no direct method for design of beams. In general the dimensions of the beam and reinforcement are initially assumed and then the interaction formula is used to verify the suitability of chosen dimensions. This approach necessitates few trials for coming up with an economical and safe design. This paper demonstrates the applicability of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for the design of beams subjected to moment and shear. A hybrid neural network model which combines the features of feed forward neural networks and genetic algorithms has been developed for the design of beam subjected to moment and shear. The network has been trained with design data obtained from design experts in the field. The hybrid neural network model learned the design of beam in just 1000 training cycles. After successful learning, the model predicted the depth of the beam, area of steel, spacing of stirrups required for new problems with accuracy satisfying all design constraints. The various stages involved in the development of a genetic algorithm based neural network model are addressed at length in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号