首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The main purpose of thermal spraying method is to produce wear resistant surfaces. Easy applicability, very low possibility of metallurgical changes and low distortion of coated parts due to low heat transfer to the substrate and salvation of worn parts are some of the practical advantages of this process. In this study, abrasive wear behaviour of powder flame sprayed coatings on steel substrates has been investigated. Coating was carried out onto both hot and cold substrates by using four types of powders. Prior to the wear tests, the coated specimens were machined on a lathe and surface roughness and hardness measurements were carried out on the machined surfaces. Heating the substrates prior to the coating led to the decrease in the hardness of the coating layers. Abrasive wear resistance of flame sprayed coatings was seen to be dependent on the chemical composition and characteristics of coating materials and coating condition.  相似文献   

2.
Abstract

An additional coating against wear or corrosion on component parts is required for many applications. These coatings protect the substrate material against external influences, thus increasing the economic lifetime of the component. Coating processes such as build-up welding and thermal spraying are well established and commonly used. The thermal spray process, in particular, permits deposition of metals, ceramics, or cermets materials to produce near net shape coatings on complex surface geometries. However, commonly used coating materials suffer from high raw material costs, thus decreasing the cost effectiveness of the coating process. Fe based materials are low priced and possess noteworthy mechanical properties; they thus provide the possibility of substituting the expensive Ni and Co based materials commonly used for thermal spray processes. In this work, 2 mm thick high velocity oxyfuel sprayed Fe based coatings in the as sprayed and thermally sprayed and hot isostatic pressed condition were investigated with respect to their mechanical and wear properties. Additionally, the fracture surface was investigated by scanning electron microscopy to characterise the fracture behaviour. It could be demonstrated that the substrate and the heat treatment have the greatest impact on the shear strength of thermally sprayed cold work tool steel. It is shown that the substrate materials as well as the heat treatment are promoting diffusion processes across the interface between the coating and the substrate. Hence, a material integrated bond is formed. The microstructures of the thermally sprayed coatings become more important regarding the mechanisms of failure of the four point bending tests. The material strength is influenced by quenching and tempering and the specimen deflection is influenced by diffusion reactions induced by hot isostatic pressing treatment. The thermally sprayed coatings in the as sprayed condition feature the highest wear resistance due to their hardness.  相似文献   

3.
冷喷涂沉积层中的孔隙率反映了喷涂颗粒的变形程度及它们之间的结合程度,对沉积层的硬度、弹性模量、摩擦磨损性能、耐腐蚀性能和疲劳性能等均有一定影响.沉积层孔隙率对评价沉积层综合性能、优化冷喷涂工艺等均有着重要的意义,是衡量沉积层质量的重要指标之一.目前已有多篇文章系统介绍了冷喷涂工艺对沉积层性能的影响,但鲜有关于冷喷涂沉积...  相似文献   

4.
Aluminium foams produced via the PM‐process are characterized by a moderate specific strength, a high surface roughness, and a poor wear behavior; to increase their mechanical properties and to improve the surface finish, wear and corrosion resistance; thermally sprayed coatings can be applied. The quality of the coating depends on the coating material, the chosen process, the preparation of the surface and spraying parameters. Aluminium alloys and iron based alloys for abrasive applications were deposited via electric arc spraying, ceramic coatings against wear were deposited by means of plasma spraying. Hard metallic coatings for severe abrasive applications were applied by high‐velocity‐oxyfuel spraying (HVOF). The results proved the suitability of this technique to significantly enhance the mechanical properties and the surface finish of metal foams. The specific strength and stiffness of the new composite materials outperform pure metal foams. The corrosion behavior was tested performing a salt spray test.  相似文献   

5.
Virtual Material‐ and Processdesign of Functional Coatings Thermally sprayed and plasma transferred arc clad coatings are often used to improve the surface properties of mechanical parts with regard to an improved wear and corrosion behavior. New coating processes and applications can be developed, if it is possible to control the coating microstructure by a defined management of the process parameters. Simulation can be used to get a detailed understanding of the process‐material interaction for a defined controlling of the process parameters with less experimental effort. This allows a systematic variation of the coating structure and to calculate the parameter set which represents the best compromise between a high deposition rate and low residual stresses in the coating. In order to model thermal spraying, the following sub‐processes are considered: gas flow, material supply, heating and accelerating of particles, particle impact on the substrate, coating formation, solidification and formation of residual stresses. The results presented in this paper will demonstrate the influence of the process parameters on particle properties and subsequently on the splat formation, the coating formation and the coating microstructure. Controlling different process parameters like material injection conditions and substrate properties, the heating, cooling and solidification behavior of the particles and the coating structure can be influenced significantly.  相似文献   

6.
为了满足工业领域铜合金传热、耐磨、耐腐蚀性能优异的要求,对铜合金表面先等离子喷涂NiCrFeWBC自熔合金层,再进行激光重熔.采用现代分析技术研究了重熔处理对涂层显微组织及耐磨性能的影响.结果表明:等离子喷涂NiCrFeWBC自熔合金涂层重熔后层状组织、孔洞等缺陷完全消失,激光熔覆层与铜基体为冶金结合,涂层致密、组织均匀;熔覆层由表及里依次呈等轴晶、树枝晶及胞状晶形貌,并有WC,W_2C,Ni_3B等颗粒析出;熔覆层磨损性能明显高于铜合金基体及热喷涂涂层,磨损机理为典型的磨粒磨损.  相似文献   

7.
Manufacturing of HVOF sprayed, finest structured cermet coatings using fine WC‐12Co powders The continuous increase in productivity and performance of modern sheet metal forming processes combined with the employment of novel, high strength materials cause high wear on tool systems. Coating technologies like thermal spraying provide a high potential to functionalize and to protect the surface of forming tools. However, it has to be ensured that the high shape and dimensional accuracy of the tool contour is preserved after the application of a wear protective coating. This aim cannot be achieved using currently applied, thermally sprayed coating systems with conventional, coarse grained microstructure. To solve this problem, novel finest structured coatings have been developed in this study by thermal spraying of fine WC‐12Co powders using the HVOF technique. For this purpose the influence of varying HVOF combustion gas compositions on the spray process as well as on the corresponding coating properties has been investigated. Next to a high surface quality the focus was placed on achieving coatings with high hardness and corresponding high wear resistance, low porosity as well as a good adhesive strength on the substrate material.  相似文献   

8.
Ceramic Polymer Composite Coatings The tribological properties of ceramic-polymer composite coatings which consist of thermal sprayed oxide ceramics coated with polymer lacquers for numerous industrial applications are discussed in this paper. The surface of these coatings match the requirements of high wear resistance and low coefficient of friction which is desired for many industrial applications. For experimental evaluation, samples were fabricated by coating aluminum substrates with titanium dioxide by means of atmospheric plasma spraying (APS). This oxide ceramic surface was successively coated by means of air spraying with a polymer lacquer containing molybdenum disulphide (MoS2) and polytetrafluor ethylene (PTFE) as solid lubricants. The tribological properties (coefficient of friction and wear) of this combination layer were determined using a tribometer under oscillating sliding movement.  相似文献   

9.
先进行正交试验优化镀液的工艺参数,然后用化学镀对莫来石粉末进行表面包覆并对包覆粉末进行850℃热处理,用等离子喷涂技术在304不锈钢表面分别制备莫来石涂层和包覆粉末涂层。用附带能谱的扫描电镜(SEM)和X射线衍射仪(XRD)表征了包覆粉末和涂层的微观结构,用HV-1000维氏显微硬度仪测试了涂层硬度,用HT-1000摩擦实验机测试了800℃时涂层的摩擦磨损性能。结果表明:镀液的优化工艺参数为:硫酸镍20 g/L,次磷酸钠30 g/L,柠檬酸钠20 g/L,氯化铵20 g/L,pH=5.5,水浴温度80℃,施镀时间1 h。在莫来石粉末表面包覆的Ni-P镀层均匀致密,热处理使包覆镀层由非晶态向晶态转变,生成了Ni和Ni3P相。莫来石涂层主要由莫来石相和γ-Al2O3相组成,包覆粉末涂层主要由Ni、AlNi3、Ni3P和莫来石相组成。在包覆粉末涂层中引入Ni-P镀层使涂层的硬度由417.5 HV0.2提高到500.1 HV0.2。包覆粉末涂层的耐磨性优于莫来石涂层,包覆粉末涂层的摩擦系数比莫来石涂层明显减小,包覆粉末涂层的磨损率为13×10-4 mm3  相似文献   

10.
Ti-Al双丝超音速电弧喷涂涂层的滑动磨损特性研究   总被引:5,自引:0,他引:5  
李平  王汉功 《材料工程》2004,(11):11-14,17
为了提高铝合金(LY12)的表面耐磨性,采用钛、铝金属丝材和SAS-Ⅰ型超音速电弧喷涂设备,利用二次回归正交试验方法、有润滑滑动磨损试验、涂层显微组织和磨损表面形貌观察、XRD分析,定量分析了喷涂电压和喷涂距离对涂层滑动磨损体积的影响规律,并进行了喷涂工艺参数的优化及其与基体滑动磨损的对比试验.结果表明:在特定的磨损和喷涂条件下,当喷涂距离较小时,随喷涂电压的增大,涂层的体积磨损量逐渐减小;随着喷涂距离的增加,涂层的体积磨损量随喷涂电压的升高逐渐增大,并且喷涂距离越大,涂层的体积磨损量随喷涂电压增大的速率愈大.当喷涂电压比较低时,涂层的体积磨损量随喷涂距离的增大而降低,但是,随喷涂电压的逐渐升高,涂层的体积磨损量随喷涂距离的增大逐渐上升,并且,喷涂电压愈高,其随喷涂距离而增加的速率越快.当喷涂电压和喷涂距离分别为26V和0 236m时,涂层具有最佳的耐滑动磨损性能,根据该工艺参数制成的涂层,其滑动磨损体积仅为LY12铝合金的1/38.84.即在适当的工艺条件下,Ti-Al双丝超音速电弧喷涂涂层对LY12铝合金具有显著的表面耐磨强化作用.  相似文献   

11.
滑靴耐磨减摩涂层制备   总被引:1,自引:0,他引:1       下载免费PDF全文
目的制备减摩耐磨涂层,使滑靴在高速干摩擦条件下运动时能够减弱由于颗粒磨损、表面凿削和高温热烧蚀而引起的烧蚀和磨损。方法使用超音速火焰喷涂技术,在滑靴滑轨同材料试样上喷涂NiCr-Cr_3C_2耐磨涂层,并且加入不同质量分数的Ni包MoS_2粉末对涂层性能进行优化,接着通过对制得的涂层进行硬度、结合强度、摩擦磨损系列试验,对比各项试验结果得到了最优粉末质量分数配比,从而使制得的涂层在具有耐磨基础的同时也能达到减摩的效果。结果对涂层进行各种性能表征,综合各种试验结果可得出,选择Ni包MoS_2的质量分数为16%~24%之间时,涂层的综合效果最好。结论制得的涂层应用在滑靴摩擦表面上不仅可以使滑靴基体的表面温升缓慢,还能够极大程度上降低热烧蚀的发生,有效解决了滑靴高速运动下由于温升而使材料气化的问题。  相似文献   

12.
Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.  相似文献   

13.
玻璃幕墙具有难清洁、易起雾等缺点,增加了墙体维护的成本。以水性聚氨酯(PU)、亲水型纳米SiO2、正硅酸乙酯(TEOS)和乙醇为基本原料,采用喷涂工艺,将配置好的PU-SiO2涂层溶液喷涂在玻璃幕墙上,常温固化后即可得到具有良好耐磨性、防雾的PU-SiO2透明涂层。利用SEM对PU-SiO2涂层表面形貌进行了表征并通过对比实验探究了表面润湿性的成因,分析了PU-SiO2涂层具有超亲水特性原理。耐磨性和防雾性测试结果表明:PU-SiO2涂层最大可承受约为26 kPa的压强并具有良好的防雾特性。紫外可见分光光度计测试结果表明:PU-SiO2涂层具有良好的透明性。户外放置实验表明:PU-SiO2涂层具有良好的耐候性。该方法解决了复杂工序问题和环保问题,可直接用于现有建筑物的玻璃幕墙表面。   相似文献   

14.
杨景文  李文亚  邢词皓  殷硕 《材料保护》2022,55(1):58-70+85
冷喷涂技术自其发现,就在制备致密金属涂层方面表现出突出的优势,但有时候涂层性能并不能满足工业需要。鉴于此,以被广泛关注的纯铜为例,主要综述了近年来国内外冷喷涂铜涂层的工艺与性能特征,讨论了4种后处理工艺对冷喷涂铜涂层组织及性能的影响,并给出了冷喷涂铜涂层在主要领域的应用,最后对冷喷涂制备纯铜仍然存在的难题与解决策略进行了分析展望。  相似文献   

15.
A kinetic spraying process, which is basically a solid-state deposition process, was used for the formation of a fully amorphous coating. By using a pre-heating system for the powder carrier gas and using helium for the process gas, it was possible to form an amorphous coating. The main process parameters evaluated during this study were gas species [N2 and He] and pre-heating temperature [RT (below Tg) and 550 °C (liquid metallic region)]. Aside from the empirical approach, in-flight particle velocity within the kinetic spraying process was measured using a SprayWatch-2i system. The deposition behavior of a NiTiZrSiSn bulk amorphous powder was observed when it was sprayed using the kinetic spraying process. In order to predict the temperature-dependent deformation behavior of the bulk amorphous material during impact, Vickers microhardness, as an indirect method, was measured at various temperatures.While the bulk amorphous feedstock material was being coated, both the kinetic and thermal energies of the in-flight particles were important. The former affected the deposition of the bulk amorphous coating, while the latter had more effect on the mechanical properties of the coating. Particle deposition behavior was considered from the viewpoint of the environmental effect, such as particle–energy combination, on the deposition behavior. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by temperature-dependent deformation and fracture (local liquid formation) behavior.  相似文献   

16.
The results and development of a new full ceramic abradable turbine seal coating material prepared by thermal spraying are presented. The main objective was to achieve high temperature abradability and low mating part wear using an erosion-resistant coating with high temperature stability and thermal shock resistance. The new coating was successfully laboratory tested at temperatures of at least 1100°C (2012°F). Commercial metal-based abradable coatings which are currently available are limited to lower operating temperatures. Typical plasma- sprayed ceramic coatings, because of inherent high particle velocities, are normally to dense to permit abrading without experiencing high turbine blade tip wear damage. In contrast, lower velocity combustion-sprayed ceramic coatings frequently have lower toughness and cohesive particle strength for resistance to abrasive erosion. The new coating material is designed to react exothermically, during combustion spraying, to produce a coating both with high interparticle cohesive strength for resistance to abrasive particle erosion and with controlled porosity for low turbine blade tip wear and effective abradability. Adjustment of spraying conditions gives flexibility to alter the coating hardness and porosity and permits the tailoring of abradability and erosion resistance properties for specific operating requirements.Based on specially developed test methods for high temperature abradability, high temperature particle erosion and thermal cycling, the modified zirconia coating showed superior performance to high performance baseline materials tested in the program. Industrial evaluation of this coating is presently being conducted.  相似文献   

17.
宫立达  刘伟 《功能材料》2021,(4):4114-4119,4125
以水力机械材料中的A3钢为基体材料,选取UDS-200全自动爆炸喷涂系统为喷涂设备,通过不同喷涂功率在A3钢表面喷涂了5种不同孔隙率的Cr3C2-NiCr涂层样品。采用FE-SEM和显微硬度计,研究了Cr3C2-NiCr涂层样品的表面形貌和显微硬度;通过摩擦磨损试验和中性盐雾腐蚀试验,研究了Cr3C2-NiCr涂层样品对水力机械材料的耐磨性能和耐腐蚀性能的影响。结果表明,实施摩擦磨损后,Cr3C2-NiCr涂层样品表面的磨痕部位比其余部位更为光滑,磨痕呈现清晰的条纹状;Cr3C2-NiCr涂层样品的摩擦系数呈现先升高后降低的趋势,升高和降低的波动幅度较小,摩擦系数基本稳定在0.6左右;Cr3C2-NiCr涂层属于脆性材料,其质量磨损率与摩擦角度和摩擦速度成正比,而与摩擦温度成反比,孔隙率越高耐磨性能越差;Cr3C2-NiCr涂层样品的孔隙率越高,耐腐蚀性能就越差;随着孔隙率的逐渐提升,Cr3C2-NiCr涂层样品的失重量和失重速率均不断提升;喷涂层数越多,则Cr3C2-NiCr涂层的腐蚀速率越低,耐腐蚀性能越好,能够更好地保护水力机械材料不被介质腐蚀。  相似文献   

18.
Thermal barrier coatings are extensively used to protect metallic components in applications where the operating conditions include aggressive environment at high temperatures. These coatings are usually processed by thermal spraying techniques and the resulting microstructure includes thin and large splats, associated with the deposition of individual droplets, with porosity between splats. This porosity reduces the oxidation and corrosion resistance favouring the entrance of aggressive species during service. To overcome this limitation, the top coat could be modified by laser glazing reducing surface roughness and sealing open porosity. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. This layer inhibited the ingress of aggressive species and delayed bond coat oxidation.  相似文献   

19.
冷喷涂304不锈钢涂层的弯曲力学行为研究   总被引:1,自引:0,他引:1  
采用冷喷涂(CGDS)技术在IF钢基体上制备304不锈钢涂层.用SHIMADZU液压伺服疲劳试验机对304不锈钢涂层样品进行三点弯曲实验,用扫描电子显微镜来研究冷喷涂304不锈钢涂层的断裂行为.结果表明:冷喷涂304不锈钢涂层的断裂行为为脆性断裂;裂纹萌生于涂层表面,随着载荷和力矩的增加,裂纹向涂层内部扩展,裂纹在涂层...  相似文献   

20.
Binary and ternary compounds of TiN and (Ti,Al)N were deposited by magnetron sputtering over low pressure plasma nitrided layer. Tribological behavior under dry-sliding conditions was evaluated with pin-on-ring test machine. The significant process parameters, friction coefficient and contact temperature, were checked with a modern measurement line that includes computer for acquisition and processing of data and monitoring the wear process. The wear zone morphology and characteristics of surface layer structure as well as important properties were investigated by scanning electron microscopy (SEM). Energy-dispersive x-ray analysis (EDAX) of the wear-scars on pins provided essential information on the wear characteristics. Based on all results the correlation between the surface structure and tribological wear characteristics were explained. It was concluded that formation of the plasma nitrided layer at low pressure, beneath a TiN and (Ti,Al)N over coating, is important in determining the use of hard coating for reducing the wear. An excellent coating to substrate adhesion and low friction coefficient was found to be significant factor influencing the use of plasma nitriding at low pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号