首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to present a case study relating to the dissimilar friction stir welding (FSW) ability of AA 7075‐T651 and AA 6013‐T6 by applying pin offset technique. An orthogonal array L18 was conducted to perform the overlapped weld seams using three different values of pin offset, welding speed and tool rotational speed along with two different pin profiles determine the impact of welding parameters on the tensile properties of friction stir welded joints. The nugget zone for each of overlapped weld seams exhibited a complex structure and also, the pin offset and profile also were found to have a great impact on the microstructural evolution of the nugget zone. The ultimate tensile strength, elongation at the rapture and bending strength of welded joints were measured in the ranges of 194–215 MPa, 1.79–3.34 % and 203–352 MPa. From the Taguchi based Grey relational analysis, the optimum welding condition was determined for the welded joint performed using a single fluted pin profile with the zero pin offset, tool rotational speed of 630 min?1 and welding speed of 63 mm/min. Microstructural and macro‐structural observations revealed that welded joints exhibiting lower tensile strength are consistent of various types of defects (e. g. cracks, tunnels and cavities). The fracture location of welded joints was found to be on the heat affected zone and between the heat affected zone and AA 6013‐base metal. The tool and pin wear was not observed during the welding applications  相似文献   

2.
Conventional friction stir welding(FSW) and ultrasonic assisted friction stir welding(UAFSW) were employed to weld 6-mm thick 7 N01-T4 aluminum alloy plates. Weld forming characteristics and material flow behavior in these two different welding processes were studied and compared. Ultrasonic vibration was applied directly on the weld in axial direction through the welding tool. Metal flow behavior,microstructure characteristics in the nugget zone(NZ) and evolution of the mechanical properties of naturally aged joints were studied. Results show that the ultrasonic vibration can significantly increase the welding speed of defect-free welded joint. At the rotation speed of 1200 rpm, the UAFSW can produce defect-free welded joints at a welding speed that is 50% higher than that of the conventional FSW.Ultrasonic vibrations can also improve surface quality of the joints and reduce axial force by 9%. Moreover, ultrasonic vibrations significantly increase the volume of the pin-driven zone(PDZ) and decrease the thickness of the transition zone(TZ). The number of subgrains and deformed grains resulting from the UAFSW is higher than that from the FSW. By increase the strain level and strain gradient in the NZ,the ultrasonic vibrations can refine the grains. Ultrasonic energy is the most at the top of the NZ, and gradually reduces along the thickness of the plate. The difference in strengths between the FSW and the UAFSW joints after post-weld natural aging(PWNA) is small. However, the elongation of the UAFSW is8.8% higher than that of the FSW(PWNA for 4320 h). Fracture surface observation demonstrates that all the specimens fail by ductile fracture, and the fracture position of the UAFSW joint changes from HAZ(PWNA for 120 h) to NZ(PWNA for 720 and 4320 h).  相似文献   

3.
对厚度为3.5mm的7046铝合金挤压板材进行搅拌摩擦焊接并对焊接接头进行人工时效,研究了焊后时效对接头力学性能的影响.结果 表明,焊接接头时效前的硬度分布大致呈"W"形,抗拉强度为406.5 MPa,焊接系数为0.8,拉伸时在后退侧热影响区与热机影响区的过渡位置出现断裂,此处的硬度值最低,断裂面上有大量的韧窝;进行1...  相似文献   

4.
采用8.5 mm厚度2A14-T4铝合金和自主研制搅拌工具进行静止轴肩搅拌摩擦焊(stationary shoulder friction stir welding,SSFSW)实验,探讨焊接工艺参数对接头组织和力学性能的影响规律。结果表明:只有在低转速工艺参数范围内(转速ω=400~600 r/min与焊接速率v=60~120 mm/min)可获得焊缝表面光滑、无缺陷厚板铝合金SSFSW焊接接头。SSFSW焊缝区主要由焊核区(NZ)组成,周围热力影响区(TMAZ)及热影响区(HAZ)宽度明显减小,焊核区与搅拌针形状类似且由两种不同尺寸细小等轴晶构成,前进侧NZ晶粒比后退侧NZ更为细小。接头显微硬度呈"W"状分布,NZ硬度值可达到母材硬度80%~90%,TMAZ与HAZ交界处存在软化区,硬度最低为母材硬度72%左右。在给定ω=500 r/min,v=140 mm/min焊接参数下,SSFSW接头抗拉强度可达到母材的88%,断裂位置多位于后退侧TMAZ与HAZ交界处软化区,具有韧性断裂特征。  相似文献   

5.
For friction stir welding (FSW), a new idea is put forward in this paper to weld the thin plate of Al alloy by using the rotational tool without pin. The experiments of FSW are carried out by using the tools with inner-concave-flute shoulder, concentric-circles-flute shoulder and three-spiral-flute shoulder, respectively. The experimental results show that the grain size in weld nugget zone attained by the tool with three-spiral-flute shoulder is nearly the same while the grain sizes decrease with the decrease of welding velocity. The displacement of material flow in the heat-mechanical affected zone by the tool with three-spiral-flute shoulder is much larger than that by the tool with inner-concave-flute shoulder or concentric-circles-flute shoulder. The above-mentioned results are verified by numerical simulation. For the tool with three-spiral-flute shoulder, the tensile strength of FSW joint increases with the decrease of welding velocity while the value of tensile strength attained by the welding velocity of 20 mm/min and the rotation speed of 1800 r/min is about 398 MPa, which is 80% more than that of parent mental tensile strength. Those verify that the tool with three-spiral-flute shoulder can be used to join the thin plate of Al alloy.  相似文献   

6.
6005A-T6 aluminum alloy is welded by stationary shoulder friction stir welding (SSFSW). At a constant rotational velocity of 2000 rpm, the effect of welding speed on mechanical properties of SSFSW joint are investigated in detail. Defect-free joint with gloss surface and small flash is attained and no cracks appear at the bending angle of 180°. Compared with traditional friction stir welding (FSW), width of rotational shoulder affected zone is relatively small because of the smaller diameter of rotational shoulder. Increasing welding speed is benefit for reducing the width of softening region and the softening degree. The fracture position of welding joint locates in thermo-mechanically affected zone and the fracture surface morphology presents the typical ductile fracture. The maximum tensile strength of joint at the welding speed of 400 mm/min reaches 82% of base metal (BM).  相似文献   

7.
The aim of this study is to examine the effect of main friction stir welding (FSW) parameters on the quality of acrylonitrile butadiene styrene (ABS) plate welds. Welds were carried out in a FSW machine, using a tool with a stationary shoulder and no external heating system. The welding parameters studied were the tool rotational speed which varied between 1000 and 1500 (rpm); the traverse speed which varied between 50 and 200 (mm/min), and the axial force ranging from 0.75 to 4 (kN). The major novelty is to study the influence of the parameter axial force on FSW of polymers. Produced welds have always a tensile strength below the base material, reaching the maximum efficiencies of above 60 (%) for welds made with higher rotational speed and axial force. Good quality welds are achieved without using external heating, when the tool rotational speed and axial force are above a certain threshold. Above that threshold the formation of cavities and porosity in the retreating side of the stir zone is avoided and the weld region is very uniform and smooth. For low rotational speed and axial force welds have poor material mixing at the retreating side and voids at the nugget. For this reason the strain at break of these welded plates is low when compared with that of base material.  相似文献   

8.
Copper (T2) and aluminium alloy (5A06) were welded by friction stir welding (FSW). The microstructure, mechanical properties and phase constituents of FSW joints were studied by metallography, tensile testing machine and X-ray diffraction. The results indicated that the high quality weld joint could be obtained when tool rotational speed is 950 rpm, and travel speed is 150 mm/min. The maximum value of tensile strength is about 296 MPa. The metal Cu and Al close to copper side in the weld nugget (WN) zone showed a lamellar alternating structure characteristic. However, a mixed structure characteristic of Cu and Al existed in the aluminium side of weld nugget (WN) zone. There were no new Cu-Al intermetallic compounds in the weld nugget zone.  相似文献   

9.
6005A-T6铝合金搅拌摩擦焊接头组织与力学性能特征   总被引:1,自引:0,他引:1  
采用光学显微镜、扫描电子显微镜、透射电子显微镜、拉伸实验机和显微硬度计对6005A铝合金搅拌摩擦焊接头的微观组织及力学性能进行了研究。结果表明:焊核区为细小的等轴晶,几乎所有粒子溶于基体;热机械影响区呈现为被拉长的畸变晶粒,且存在大量的位错;热影响区的组织明显粗化,处于过时效状态。与母材相比,搅拌摩擦焊接头的强度及伸长率均有下降趋势,且接头出现软化,最小硬度值出现在前进侧的热影响区内。搅拌头旋转速率为1200r/min、焊接速率为200mm/min时可获得优质接头,抗拉强度达到母材强度的72%,伸长率达到母材的69%。  相似文献   

10.
The weld thinning phenomenon occurring in conventional friction stir welding (C-FSW) has negative effects on the formation quality and serviceable reliability of FSW joints. The existing methods for solving the weld thinning problem in FSW exhibit some universal deficiencies, such as low efficiency, low quality and narrow applicable range. Motivated by this challenge, a novel non-weld-thinning (NWT) FSW process, during which a zero shoulder plunge depth is applied to the welding tool, is proposed and investigated in the present paper. The results indicate that the high quality NWT-FSW joints can be efficiently produced by using this novel process. Microstructural analysis implies that the grains in weld nugget of NWT-FSW joints present smaller size and a more uniformly distributed feature than those of C-FSW joints. Compared with the C-FSW joints, the NWT-FSW joints are characterized by narrower softening regions and higher minimum hardness values, leading to an increase in tensile strength during tensile test. The temperature history analysis suggests that the thermal effect of tool shoulder is effectively controlled during NWT-FSW due to the application of zero shoulder plunge depth, which is the intrinsic reason for the grain refinement and strength improvement of NWT-FSW joints.  相似文献   

11.
Microstructure and mechanical properties of friction stir welded copper   总被引:1,自引:0,他引:1  
The main objective of this investigation was to apply friction stir welding technique (FSW) for joining of 2 mm thick copper sheet. The defect free weld was obtained at a tool rotational and travel speed of 1,000 rpm and 30 mm/min, respectively. Mechanical and microstructural analysis has been performed to evaluate the characteristics of friction stir welded copper. The microstructure of the weld nugget (WN) consists of fine equiaxed grains. Similarly, the elongated grains in the thermomechanically affected zone (TMAZ) and coarse grains in the heat-affected zone (HAZ) were observed. The hardness values in the WN were higher than the base material. Eventually HAZ shows lowest hardness values because of few coarse grains presence. Friction stir welded copper joints passes 85% weld efficiency as compared to the parent metal.  相似文献   

12.
In friction stir welding (FSW), the material under the rotating action of non-consumable tool has to be stirred properly to get defect free welds in turn it will improve the strength of the welded joints. The welding conditions and parameters are differing based on the mechanical properties of base materials such as tensile strength, ductility and hardness which control the plastic deformation during friction stir welding. The FSW process parameters such as tool rotation speed, welding speed and axial force, etc. play a major role in deciding the weld quality. FSW Joints of cast aluminium alloys A319, A356, and A413 were made by varying the FSW process parameters and the optimum values were obtained. In this investigation, empirical relationships are established and they can be effectively used to predict the optimum FSW process parameters to fabricate defect free joints with high tensile strength from the known base metal properties of cast aluminium alloys.  相似文献   

13.
High strength aluminium alloys generally present low weldability because of the poor solidification microstructure, porosity in the fusion zone and loss in mechanical properties when welded by fusion welding processes which otherwise can be welded successfully by comparatively newly developed process called friction stir welding (FSW). This paper presents the effect of post weld heat treatment (T6) on the microstructure and mechanical properties of friction stir welded 7039 aluminium alloy. It was observed that the thermo-mechanically affected zone (TMAZ) showed coarser grains than that of nugget zone but lower than that of heat affected zone (HAZ). The decrease in yield strength of welds is more serious than decrease in ultimate tensile strength. As welded joint has highest joint efficiency (92.1%). Post weld heat treatment lowers yield strength, ultimate tensile strength but improves percentage elongation.  相似文献   

14.
目的在保证搅拌速度一定时,针对8 mm厚的7A52铝合金,在不同焊接速度下采用搅拌摩擦焊(FSW)进行焊接试验,研究其焊接接头的显微组织及力学性能。方法利用搅拌摩擦焊机进行对接焊接,焊后制取金相试样观察焊接接头宏观形貌和显微组织,并测定其力学性能。结果7A52铝合金FSW焊接接头焊核区的面积随着焊接速度的增大而增大,当焊接速度为250mm/min时,焊接接头的焊核区面积最大,焊核区的显微组织都为细小的等轴晶,焊接接头横截面的焊核区呈明显"洋葱环"的形貌,而热力影响区的结构特征则呈现出了较高的塑性变形流线层。焊接接头显微硬度分布都呈现出"W"形变化,在焊接速度为150 mm/min时,焊接接头的平均抗拉强度能达到452 MPa,达到了母材抗拉强度的89%。结论通过对不同焊接速度下7A52铝合金FSW焊接接头的组织和性能进行研究,得到了不同焊接速度下焊接接头组织和力学性能。  相似文献   

15.
对8 mm厚5083-H321铝合金板进行了搅拌摩擦焊接试验,研究了焊接工艺参数对搅拌摩擦焊接头显微组织和力学性能的影响。结果表明:该搅拌摩擦焊接头焊核区显微组织为细小的等轴晶组织,热机影响区为拉伸弯曲变形组织,热影响区非常窄,其晶粒尺寸与母材相当;综合接头表面形貌和拉伸性能得到较佳的搅拌摩擦焊接工艺参数为使用搅拌针为三棱形带螺纹、轴肩为内扣型的搅拌头,主轴转速为300 r·min-1,焊接速率为120 mm·min-1;在该工艺条件下接头表面成形良好,抗拉强度可达到母材的94.5%。  相似文献   

16.
Reverse dual-rotation friction stir welding (RDR-FSW) has great potential to obtain appropriate welding conditions through adjusting the independently rotating tool pin and surrounding shoulder. The welding torque exerted on the workpiece by the reversely rotating shoulder also cancels off a part of the welding torque exerted by the rotating tool pin, thus the clamping requirement for the workpiece is also reduced. In the present paper, a tool system for the RDR-FSW was designed and successfully applied to weld high strength aluminum alloy 2219-T6, and then microstructures and mechanical properties of the optimized joint were investigated to demonstrate the RDR-FSW characteristics. The weld nugget zone was characterized by the homogeneity of refined grain structures, but there was a three-phase confluction on the advancing side formed by different grain structures from three different zones. The tensile strength of the optimized joint was 328 MPa (73.7% of the base material), showing an obvious improvement when compared with the optimized joint welded by the FSW without the reversely rotating assisted shoulder. The tensile fracture occurred in the ductile fracture mode and the fracture path propagated in the weakest region where the Vickers hardness is the minimum.  相似文献   

17.
Abstract

The microstructural change related with the hardness profile has been evaluated for friction stir welded, age hardenable 6005 Al alloy. Frictional heat and plastic flow during friction stir welding created fine and equiaxed grains in the stir zone (SZ), and elongated and recovered grains in the thermomechanically affected zone (TMAZ). The heat affected zone (HAZ), identified only by the hardness result because there is no difference in grain structure compared to the base metal, was formed beside the weld zone. A softened region was formed near the weld zone during the friction stir welding process. The softened region was characterised by the dissolution and coarsening of the strengthening precipitate during friction stir welding. Sound joints in 6005 Al alloys were successfully formed under a wide range of friction stir welding conditions. The maximum tensile strength, obtained at 507 mm min-1 welding speed and 1600 rev min-1 tool rotation speed, was 220 MPa, which was 85% of the strength of the base metal.  相似文献   

18.
Joints of Al 5186 to mild steel were performed by using friction stir welding (FSW) technique. The effects of various FSW parameters such as tool traverse speed, plunge depth, tilt angle and tool pin geometry on the formation of intermetallic compounds (IMCs), tunnel formation and tensile strength of joints were investigated. At low welding speeds due to the formation of thick IMCs (which was characterized as Al6Fe and Al5Fe2) in the weld zone the tensile strength of joints was very poor. Even at low welding speeds the tunnel defect was formed. As the welding speed increased, the IMCs decreased and the joint exhibited higher tensile strength. The tunnel defect could not be avoided by using cylindrical 4 mm and 3 mm pin diameter. By using a standard threaded M3 tool pin the tunnel was avoided and a bell shape nugget formed. Therefore tensile strength of the joint increased to 90% of aluminum base alloy strength. At higher welding speed and lower tool plunge depth, the joint strength decreased due to lack of bonding between aluminum and steel. Based on the findings, a FSW window has been developed and presented.  相似文献   

19.
Friction stir welding (FSW) was applied to a 2.4 mm thick high nitrogen nickel-free austenitic stainless steel plate using tungsten–rhenium (W–Re) tool. The high-quality weld was successfully produced at a tool rotational speed of 400 rpm and a traveling speed of 100 mm/min. The microstructure, mechanical and corrosion properties of the weld were studied. The nitrogen content of the weld was almost identical to that of base metal (BM). FSW refined grains in the stir zone (SZ) through dynamic recrystallization and led to increase in hardness and tensile strength within the SZ, while the ductility was slightly decreased. The failure of tensile specimens occurred in the BM. TEM results revealed precipitates of Cr23C6 of size ~ 1 μm in the SZ, although their content was small. The precipitation of Cr23C6 and increase in δ-ferrite in the SZ led to small decrease in both pitting and intergranular corrosion resistance.  相似文献   

20.
Stationary shoulder friction stir welding (SSFSW) butt welded joints were fabricated successfully for AA6061-T6 sheets with 5.0 mm thickness. The welding experiments were performed using 750–1500 rpm tool rotation speeds and 100–300 mm/min welding speeds. The effects of welding parameters on microstructure and mechanical properties for the obtained welds were discussed and analyzed in detail. It is verified that the defect-free SSFSW welds with fine and smooth surface were obtained for all the selected welding parameters, and the weld transverse sections are obviously different from that of conventional FSW joint. The SSFSW nugget zone (NZ) has “bowl-like” shapes with fairly narrow thermal mechanically affected zone (TMAZ) and heat affected zone (HAZ) and the microstructures of weld region are rather symmetrical and homogeneous. The 750–1500 rpm rotation speeds apparently increase the widths of NZ, TMAZ and HAZ, while the influences of 100–300 mm/min welding speeds on their widths are weak. The softening regions with the average hardness equivalent 60% of the base metal are produced on both advancing side and retreating side. The tensile properties of AA6061-T6 SSFSW joints are almost unaffected by the 750–1500 rpm rotation speeds for given 100 mm/min, while the changing of welding speed from 100–300 mm/min for given 1500 rpm obviously increased the tensile strength of the joint and the maximum value for welding parameter 1500 rpm and 300 mm/min reached 77.3% of the base metal strength. The tensile fracture sites always locate in HAZ either on the advancing side or retreating side of the joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号