首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the electrical characteristics of rare‐earth‐doped ZnO varistor ceramics. Multiple donor dopants (Al3+, Ga3+, and Y3+) were employed to improve the comprehensive performance of ZnO varistor ceramics. The leakage current of rare‐earth‐doped ZnO varistor ceramics decreased noticeably with Ga2O3 dopants. The Ga3+ dopant occupies the defect sites of grain boundaries and increases the barrier potential of ZnO varistor ceramics, so the leakage current is effectively inhibited. Y2O3 is primarily located around the grains, which restrains ZnO grain growth, increasing the voltage gradient. The Al3+ goes into the lattices of ZnO grains, decreasing the grain resistance; thus, the residual voltage ratio can be controlled at low levels under a high impulse current. With the combined incorporation of Al3+, Ga3+, and Y3, excellent electrical properties of ZnO varistor ceramics can be acquired with a nonlinearity coefficient of 87, voltage gradient of 517 V/mm, leakage current of 0.96 μA/cm2, and residual voltage ratio of 1.60. These rare multiple donor dopants can aid in engineering high‐quality ZnO varistors.  相似文献   

2.
High-field ZnO/Bi2O3 varistors co-doped with Mn and Co were synthesized using a two-step co-precipitating process. A Zn2+ solution containing the Mn and Co doping elements was first precipitated into hydroxides, further converted into oxalates and finally calcined to create the doped ZnO phase. Bi3+ precipitated at the grain boundaries thanks to an HNO3 treatment of the ZnO grains. The influence of the precursor type (nitrates or chlorides) and the calcination temperature on the properties of the powders and ceramics were investigated. ICP-AES, microstructural analysis and non-linear voltage measurements were used to characterize the samples. The type of precursor solution was found to have a strong influence on the electrical properties. Furthermore, the calcination temperature modified the microstructure of the powder and consequently also that of the varistor.  相似文献   

3.
The electrical properties and degradation characteristics of low voltage ZnO varistors were investigated as a function of Nd2O3 content. The varistor ceramics with 0.03 mol% Nd2O3 sintered at 1250 °C were far more densified than those with 0.06, 0.09 and 0.12 mol% Nd2O3. The addition of Nd2O3 to the low voltage ZnO varistors greatly improved the current–voltage characteristics; the nonlinear coefficient of varistors increase from 12.2 to 34.6 with increasing Nd2O3 content. The samples with 0.03 mol% Nd2O3 showed excellent stability due to high density and relatively good VI characteristics, with the nonlinear coefficient of 22.5 and the leakage current of 9.6 μA. Their variation rate of varistor voltage and nonlinear coefficient and leakage current were −4.7%, −5.4%, 18.3%, respectively, under AC degradation stress (1.0 V1 mA/125 °C/24 h).  相似文献   

4.
Ga2O3 (5 wt.%) doped zinc oxide (ZnO, 95 wt.%) bulk was fabricated by underwater shock compaction technique. The microstructural, crystal structure and electrical properties of shock-consolidated samples were investigated and compared to a commercially available sintered Ga2O3 (5 wt.%) doped ZnO (95 wt.%). The relative density of shock-consolidated sample was about 97% of the theoretical density, and no grain growth and lattice defects were confirmed. The grain boundary resistance was remarkably higher than that of commercial sintered Ga2O3 doped ZnO and nonlinear current-voltage (I-V) characteristics of shock-consolidated ZnO and Ga2O3 doped ZnO were very lower than that of commercial ZnO varistor.  相似文献   

5.
Co-doped ZnO-based ceramics using Al, Ti, and Mg ions in different ratios were synthesized with the objective to investigate the doping effects on the crystalline features, microstructure and the electrical behavior. For Al and Ti doping, a coexistence of crystalline phases was shown with a major wurtzite ZnO structure and secondary spinel phases (ZnAl2O4, Zn2TiO4, or ZnaTibAlcOd), while Mg doping did not alter significantly the structural features of the wurtzite ZnO phase. The electrical behavior induced by Al, Ti, and Mg co-doping in different ratios was investigated using Raman, electron paramagnetic resonance (EPR) and 27Al and 67Zn solid-state nuclear magnetic resonance (NMR). Al doping induces a high electrical conductivity compared to other doping elements. In particular, shallow donors from Zni-AlZn defect structures are inferred from the characteristic NMR signal at about 185 ppm; that is, quite far from the usual oxygen coordinated Al. The Knight shift effect emanating from a highly conducting Al-doped ZnO ceramics was considered as the origin of this observation. Oppositely, as Ti doping leads to the formation of secondary spinel phases, EPR analysis shows a high concentration of Ti3+ ions which limit the electrical conductivity. The correlation between the structural features at the local order, the involved defects and the electrical behavior as function of the doping process are discussed.  相似文献   

6.
In this work, the ZnO–Bi2O3–Cr2O3–Co2O3–MnO2 varistors doped with different content of Sb2O3 were prepared by two-step solid-state reaction route, including a pre-calcining of the mixtures of nanosized ZnO and the other additives at an optimized temperature, followed by a consequent sintering process at different temperatures. Meanwhile, the effects of Sb2O3 on the sintering temperature, microstructure and electrical properties of the objective varistors were investigated. It was found the densification temperature went up in a proper range and the content of pyrochlore phase, spinel phase and β-Bi2O3 phase increased with the increasing content of Sb2O3, while the grain size of ZnO–Bi2O3-based varistor reduced. The results demonstrated that at the same sintering temperature, the second particles increased with the increasing amount of Sb2O3, which was helpful to control the grain growth, leading to a higher breakdown voltage. However, the decrease of α-Bi2O3 phase (melting point of α-Bi2O3 phase is 825 °C), which is the main component of the liquid Bi2O3 phase in the sample during sintering process, leads to the increase of the sintering temperature of the green pallet. As a result, the ZnO varistor doped with 3.0 mol% Sb2O3 sintered at 1000 °C exhibited the highest breakdown voltage of 1863.3 V/mm. By contrast, the ZnO varistor without Sb2O3 doping sintered at 900 °C had the optimum nonlinear coefficient of 59.8.  相似文献   

7.
TiO2 varistors doped with 0.2 mol% Ca, 0.4 mol% Si and different concentrations of Ta were obtained by ceramic sintering processing at 1350 °C. The effect of Ta on the microstructures, nonlinear electrical behavior and dielectric properties of the (Ca, Si, Ta)-doped TiO2 ceramics were investigated. The ceramics have nonlinear coefficients of α = 3.0–5.0 and ultrahigh relative dielectric constants which is up to 104. Experimental evidence shows that small quantities of Ta2O5 improve the nonlinear properties of the samples significantly. It was found that an optimal doping composition of 0.8 mol% Ta2O5 leads to a low breakdown voltage of 14.7 V/mm, a high nonlinear constant of 4.8 and an ultrahigh electrical permittivity of 5.0 × 104 and tg δ = 0.66 (measured at 1 kHz), which is consistent with the highest and narrowest grain boundary barriers of the ceramics. In view of these electrical characteristics, the TiO2–0.8 mol% Ta2O5 ceramic is a viable candidate for capacitor–varistor functional devices. The characteristics of the ceramics can be explained by the effect and the maximum of the substitution of Ta5+ for Ti4+.  相似文献   

8.
The Er2O3 doping effects on varistor properties and impulse aging behavior of the ZnO–PrO1.83–CoO–Cr2O3–Dy2O3 ceramics were investigated in the range of 0–2.0 mol%. The nonlinear coefficient increased from 42 to 56 with an increase in the amount of Er2O3. The clamp voltage ratio (K) decreased with an increase in the amount of Er2O3. The varistors doped with 2.0 mol% in the amount of Er2O3 exhibited the best clamping characteristics, with K = 1.43–1.83 at an impulse current of 1–50 A. The varistors doped with 0.25 mol% in the amount of Er2O3 exhibited the strongest electrical stability, with the variation rate of the breakdown field of ?0.5%, the variation rate of the nonlinear coefficient of ?5.5%, and the variation rate of the leakage current of ?1.5% after applying 400 times at an impulse current of 400 A  相似文献   

9.
The microstructure and electrical properties of Pr6O11-doped WO3 ceramics were investigated. Results showed that the breakdown voltage of doped samples was lower than that of the undoped. The dielectric constant of doped samples was higher than that of the undoped, and the high dielectric constant made Pr6O11-doped WO3 ceramics to be applicable as a kind of capacitor–varistor materials. A small content of Pr6O11 could significantly improve nonlinear properties of the samples. The WO3–0.03 mol% Pr6O11 obtained a large nonlinear coefficient of 3.8, a low breakdown voltage of 8.8 V/mm, and a high dielectric constant of 7.69 × 104 at 1 kHz. The defects theory was introduced to explain the nonlinear electrical behavior of Pr6O11-doped WO3 ceramics.  相似文献   

10.
The perovskite-like layered structure (PLS) A2B2O7 compound Sr2Nb2O7 was doped with donor dopants CeO2 and WO3 to explore their doping effect on its A and B site, respectively. The doped ceramics were prepared by Spark Plasma Sintering. For Ce doping on the A site, single phase was maintained up to 5 mol% Ce (x=0.05 in (Sr1−xCex)2Nb2O7). For W doping on the B site, single phase was maintained at 2.5 mol% W (x=0.025 in Sr2(WxNb1−x)2O7). The cerium and tungsten doping both inhibited grain growth and changed the grain morphology, leading to less anisotropic grains. The Curie point Tc was obtained by measuring the temperature dependence of the dielectric constant and it was found to reduce for both Ce and W doped SNO. The W doped ceramics showed a diffuse ferroelectric phase transition at the Curie point. The DC resistivity of tungsten and cerium doped SNO increased compared to undoped SNO at temperatures below 700 °C. These results showed that both Ce and W had a strong influence on the dielectric and electrical properties of the Sr2Nb2O7 ceramics.  相似文献   

11.
A slurry of α-Al2O3 was doped with Mg, Zr and La nitrates or chlorides, in various amounts in the range 150-500 wt ppm and then freeze-dried to produce nanosized doped powder (∼150 nm). The powder was sintered by SPS to yield transparent polycrystalline alpha alumina. The influence of the nature of the doping element and the starting salt, the thermal treatment before sintering and the sintering temperature on the transparency of the ceramics were investigated. The transparency of the ceramics of nanosized Al2O3 was shown to depend mainly on the way the powder was prepared, the nature of the doping salt also had an effect. Finally, a high real inline transmittance, reaching 48.1% was achieved after optimization.  相似文献   

12.
ZnO-based varistor ceramics doped with Nd2O3 and Y2O3 have been prepared by the conventional ceramics method. The phase composition, microstructure and electrical properties of the ceramics have been investigated by XRD, SEM and a VI source/measure unit. The XRD and EDS analyses show the presence of ZnO, Bi2O3, Zn7Sb2O12, Y2O3, Nd-rich phase and Y-containing Bi-rich phase. The electrical properties analyzed show that the nonlinear coefficient of the varistor ceramics is in the range of 4.4–70.2, the threshold voltage is in the range of 247.1–1288.8 V/mm, and the leakage current is in the range of 1.51–214.6 μA/cm2. The 0.25 mol% Nd2O3 added varistor ceramics with 0.10 mol%Y2O3 sintered at 1050 °C exhibits excellent electrical properties with the high threshold voltage of 556.4 V/mm, the nonlinear coefficient of 61 and the leakage current of 1.55 μA/cm2. The results illustrate that doping Nd2O3 and Y2O3 in ZnO-based varistor ceramics may be a very promising route for the production of the higher threshold voltage and the nonlinear coefficient of ZnO-based varistor ceramics.  相似文献   

13.
The influence of the amount of Bi2O3 and TiO2 additions at a TiO2/Bi2O3 ratio of 1, as well as Sb2O3 and/or Cr2O3 doping, on the microstructural development and electrical properties of varistor ceramics in the ZnO–Bi2O3–TiO2–Co3O4–Mn2O3 system was investigated. In samples with a low level of Bi2O3 and TiO2 (0·3 mol%) and therefore small amount of liquid phase, exaggerated growth of the ZnO grains results in high microstructural inhomogeneity. Co-doping with Sb2O3 significantly changes the phase composition of TiO2 doped low-voltage varistor ceramics. The Bi3Zn2Sb3O11 type pyrochlore phase forms at the expense of the γ-Bi2O3 and Bi4Ti3O12 phases and decreases the amount of liquid phase in the early stages of sintering. Already small amounts of Sb2O3 and/or Cr2O3 added to a TiO2 doped low-voltage varistor ceramics limit ZnO grain growth and increase the threshold voltage VT of the samples.  相似文献   

14.
The effect of CuO doping on the microstructure and electrical properties of Pr6O11 varistors was investigated. Samples were prepared by conventional ceramic techniques, and were sintered at 1150 °C in air for 2 h. The microstructure was investigated by scanning electron microscopy (SEM). The phases and chemical composition were analyzed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results indicated that CuO can promote the densification of the Pr6O11-based varistors to 95.8% of the theoretical density. CuO forms a solid solution with Pr6O11 up to 0.5 mol%, above which Pr2CuO4 precipitates in the grain boundary. From the IV measurements, minor CuO doping can improve the nonlinear electrical properties. A further increase in CuO content induces a reduction in the nonlinear electrical properties due to the consumption of absorbed oxygen on the grain surfaces.  相似文献   

15.
In, Ce and Bi doped Ba(Zn1/3Nb2/3)O3 (BZN) ceramics were prepared by conventional mixed oxide technique. In doping between 0.2 and 4.0 mol% increased the density of BZN at 1300 °C, Ce doping caused a decrease in density at 1250 °C. Levels of Bi2O3 up to 1.0 mol% had negative effect on densification, while high level doping could significantly improve the densification of the specimens. XRD of the samples indicated that In, Ce and Bi doping resulted in single phase formation at all concentrations, except 0.5 mol% Bi. SEM of Bi doped BZN indicated only single phase structure and Ce doping even at 0.2 mol% gave some secondary phases. In and Ce doping increased the dielectric constant from 41 to around 66 at 1 MHz. Bi doping decreased the dielectric constant to about 37 at 0.2 mol%, and then higher doping led to dielectric constant to increase to about 63.  相似文献   

16.
Flexible poly(vinyl chloride)/varistor composites were fabricated by solution casting method. High‐field ZnO varistor particles processed from micron‐sized Zn dust is explored as multifunctional filler for PVC composites. Mechanical blending of Zn dust with La2O3‐CeO2 rare earths and varistor forming minor additives followed by sintering at 1250 °C resulted in fine‐grained ZnO varistors. Bulk varistor was subsequently milled to obtain ZnO microvaristor grains. The effect of microvaristor on the UV stability, dielectric, and mechanical properties of the PVC composite was analyzed. The varistor filler in PVC enhanced the microhardness and retained the tensile properties without any significant loss. After UV irradiation PVC/varistor composite shows remarkable mechanical stability retention (95%) compared to pure PVC (75%). Also, microvaristor reinforcement resulted in dielectric constant tunability (? = 2–37) without any drastic change in the dielectric loss (0.02–0.05). Thus, Zn dust‐derived ZnO varistors could be potentially exploited to design functional PVC composites for electronic applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46031.  相似文献   

17.
ZnO-Bi2O3 based varistor ceramics doped with C3N4 were fabricated via solid state method. Experimental results show that C3N4 additive acts as an inhibitor in ZnO grain growth, and the average grain size decreases from 10.2–7.1 μm. The varistor breakdown voltage gradient increases from 222.3–282.3 V/mm, and the nonlinear coefficient increases from 51.9–58.2 with the increase of C3N4 content from 0 to 3.0 wt%. The C3N4-added samples exhibited smaller residual voltage ratio and better surge current withstanding capability. It is proposed that the C3N4-doping leads to substitution of nitrogen for oxygen in the grain boundary region, forming acceptor type defects. The acceptor type defects act as electron traps, increasing the barrier height from 1.31 to 1.50 eV and the depletion layer width from 54.9–61.8 nm, which increases the nonlinearity, and the surge current performances of the C3N4 doped ZnO varistor ceramics are improved.  相似文献   

18.
The conductivity of ZnO–varistor ceramics has been analyzed with conductive atomic force microscopy (C-AFM) under atmospheric conditions by measuring the current at different voltages and positions in zinc oxide-based multilayer varistors (MLVs). It is possible to detect individual ZnO grains on the polished sample surface in the AFM topography mode as well as in the two-dimensional current images. Additionally local current–voltage (IV) curves revealed details of the electrical behaviour of the material. To correlate the laterally resolved current image with grain orientations, electron backscattering diffraction (EBSD) has been performed. Beside the well-known varistor behaviour specific influence of the local microstructure has been found.  相似文献   

19.
New dense SnO2-based varistor ceramics with high nonlinear current–voltage characteristics (nonlinearity coefficients are of approximately 50) in a system of SnO2–CoO–Nb2O5–Cr2O3–Y2O3–SrO–MgO are reported. The current–voltage behaviour at high currents is studied by using exponential voltage pulses. The obtained SnO2 varistor ceramics exhibit low grain resistivity values of 0.23–0.64 ohm cm. To date, such values are the lowest known for SnO2 varistors, and are closely approaching the grain resistivity of the ZnO varistor. The current–voltage characteristics of the obtained SnO2-based varistor materials are reproducible in a wide current range from 10?11 to approximately 104 A cm?2. The minimum current density and the minimum electric field necessary to cause the irreversible electrical breakdown are measured. It is established that a decrease in the grain resistivity leads to an increase in the minimum current density necessary for irreversible electrical breakdown to occur.  相似文献   

20.
Microstructure development in ZnO ceramics with Bi4Ti3O12 (BIT) additions was studied in dependence of sintering temperature, inversion boundary (IBs) nucleation, heating rate and doping with transition metal oxides (NiO, MnO2 and Co3O4). We demonstrated that one of the essential conditions for homogeneous microstructure development in this system is rapid release and efficient distribution of TiO2, necessary for the formation of Ti-rich (tail-to-tail) IBs in ZnO grains. This can be achieved via the so-called shock-sintering procedure described in this article. Immediate decomposition of BIT to TiO2-rich Bi2O3 liquid phase above 1200 °C leads to nucleation of ZnO grains with IBs. Exploiting the growth of ZnO grains with IBs, microstructure development can be easily controlled via the IB-induced grain growth mechanism, previously described in SnO2-doped and Sb2O3-doped ZnO. In contrast to conventional sintering, where erratic nucleation of IBs leads to bimodal grain size distribution, shock-sintering sintering regime produces microstructures with uniform coarse-grain sizes, required for low-voltage varistor ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号