首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of vacuolating toxin (VacA) from Helicobacter pylori on endosomal and lysosomal functions was studied by following procathepsin D maturation and epidermal growth factor (EGF) degradation in HeLa cells exposed to the toxin. VacA inhibited the conversion of procathepsin D (53 kDa) into both the intermediate (47 kDa) and the mature (31 kDa) form. Nonprocessed cathepsin D was partly retained inside cells and partly secreted in the extracellular medium via the constitutive secretion pathway. Intracellular degradation of EGF was also inhibited by VacA with a similar dose-response curve. VacA did not alter endocytosis, cell surface recycling, and retrograde transport from plasma membrane to trans-Golgi network and endoplasmic reticulum, as estimated by using transferrin, diphtheria toxin, and ricin as tracers. Subcellular fractionation of intoxicated cells showed that procathepsin D and nondegraded EGF accumulate in lysosomes. Measurements of intracellular acidification with fluorescein isothiocyanate-dextran revealed a partial neutralization of the lumen of endosomes and lysosomes, sufficient to account for both mistargeting of procathepsin D outside the cell and the decreased activity of lysosomal proteases.  相似文献   

2.
The membrane-association of early biosynthetic form of cathepsin D has been demonstrated in hepatoma cells, and this membrane-association is not mediated by mannose 6-phosphate residues, implying that a mannose 6-phosphate receptor-independent mechanism operates in the sorting of cathepsin D. In this paper, to demonstrate whether cathepsin D is associated with the lysosomal membranes, an in vitro binding experiment was carried out employing lysosomal cathepsin D or microsomal procathepsin D isolated from rat liver. Immunoblotting analysis revealed that an intermediate form of cathepsin D was associated with the lysosomal membranes; this lysosomal membrane-associated cathepsin D was released from the membranes by washing with Na2CO3 (pH 10.6) but not with solutions containing mannose 6-phosphate. This suggested that cathepsin D associates with the membranes by ionic-interaction, and that the membrane-associated cathepsin D resides as a peripheral membrane protein in the lysosomal membrane fraction. To confirm that the intermediate form of cathepsin D specifically interacts with the lysosomal integral membrane proteins, the lysosomal membrane fraction was treated with trypsin and the binding experiment was conducted. The result showed that the binding capacity of cathepsin D to the lysosomal membranes was apparently abolished and cathepsin D did not rebind to the membranes. These data suggest that the intermediate form of cathepsin D is preferentially recognized by the lysosomal membranous protein which complements the mannose 6-phosphate receptor-dependent intracellular sorting mechanism.  相似文献   

3.
The transport of pro-cathepsin D from the trans-Golgi network (TGN) to the endosomal pathway is dependent on binding to the calcium-independent mannose 6-phosphate receptor (ci-M6PR), which is incorporated into TGN-derived clathrin-coated transport vesicles (CCVs). Inhibition of this transport step by wortmannin has led to the proposal that it is dependent upon a phosphoinositide 3-kinase activity necessary for ci-M6PR recruitment into TGN-derived CCVs or in the formation of those vesicles (Brown, W. J., DeWald, D. B., Emr, S. D., Plutner, H., and Balch, W. E. (1995) J. Cell Biol. 130, 781-796; Davidson, H. W. (1995) J. Cell Biol. 130, 797-806). In this study we have addressed the effect of wortmannin on the TGN step of the ci-M6PR cycle. CCVs from K562 cells, pretreated or not with 250 nM wortmannin, were purified on equilibrium density gradients. Quantification of TGN-derived CCVs, assessed by gamma-adaptin content in purified vesicle fractions, showed that the formation of the vesicles was only marginally decreased after 20 min of treatment with the drug, while for the same wortmannin treatment, the amount of ci-M6PR recruited into those vesicles was decreased by 70% compared with control. At a later time point (2 h), a reduction in the amount of gamma-adaptin in CCV fractions was also observed. These findings demonstrate that inhibition of ci-M6PR recruitment into CCVs but not of vesicle formation is the primary reason for the observed defect in cathepsin D transport following wortmannin treatment.  相似文献   

4.
Brucella abortus is an intracellular pathogen that replicates within a membrane-bounded compartment. In this study, we have examined the intracellular pathway of the virulent B. abortus strain 2308 (S2308) and the attenuated strain 19 (S19) in HeLa cells. At 10 min after inoculation, both bacterial strains are transiently detected in phagosomes characterized by the presence of early endosomal markers such as the early endosomal antigen 1. At approximately 1 h postinoculation, bacteria are located within a compartment positive for the lysosome-associated membrane proteins (LAMPs) and the endoplasmic reticulum (ER) marker sec61beta but negative for the mannose 6-phosphate receptors and cathepsin D. Interestingly, this compartment is also positive for the autophagosomal marker monodansylcadaverin, suggesting that S2308 and S19 are located in autophagic vacuoles. At 24 h after inoculation, attenuated S19 is degraded in lysosomes, while virulent S2308 multiplies within a LAMP- and cathepsin D-negative but sec61beta- and protein disulfide isomerase-positive compartment. Furthermore, treatment of infected cells with the pore-forming toxin aerolysin from Aeromonas hydrophila causes vacuolation of the bacterial replication compartment. These results are compatible with the hypothesis that pathogenic B. abortus exploits the autophagic machinery of HeLa cells to establish an intracellular niche favorable for its replication within the ER.  相似文献   

5.
Immature dendritic cells (DC) use both macropinocytosis and mannose receptor-mediated endocytosis to internalize soluble Ags efficiently. These Ags are ultimately presented to T cells after DC maturation and migration into the lymph nodes. We have previously described the immortalized myeloid cell line FSDC as displaying the characteristics of early DC precursors that efficiently internalize soluble Ags. To describe the different routes of Ag uptake and to identify the Ag retention compartments in FSDC, we followed the intracellular fate of FITC-coupled OVA, dextran (DX), transferrin, and Lucifer Yellow using flow cytometry, confocal microscopy, and immunoelectron microscopy. OVA and DX gained access into macropinosomes and early endosomes. DX was preferentially sorted into endosomal compartments, while most of the OVA entered macropinosomes via fluid phase uptake. We found a long-lasting retention of DX and OVA of up to 24 h. After 6 h of chase, these two molecules were concentrated in common vesicular compartments. These retention compartments were distinct from endosomes and lysosomes; they were much larger, only mildly acidic, and lacked the small GTP binding protein rab7. However, they were positive for lysosome-associated membrane protein-1, the protease cathepsin D, and MHC class II molecules, thus representing matured macropinosomes. These data suggest that the activity of vacuolar proteases is reduced at the mildly acidic pH of these vesicles, which explains their specific retention of an Ag. The retention compartments might be used by nonlymphoid tissue DC to store peripheral Ags during their migration to the lymph node.  相似文献   

6.
A protein-synthesis inhibitor, designated RPSI, was isolated from the seeds of rye (Secale cereale) using gel filtration and S-Sepharose column chromatography. RPSI is a basic protein with an isoelectric point of over 10, and the concentration of protein required for 50% inhibition of protein synthesis (IC50) of purified RPSI was about ten-fold the concentration of ricin A-chain. The complete amino acid sequence of RPSI was discovered by analyzing the peptides and fragments obtained from the proteolytic digests and by the cyanogen bromide- and hydroxylamine-cleavages of RPSI. RPSI consists of 280 amino acid residues and has a molecular weight of 30,171. RPSI has only 21% sequence identity with that of ricin A-chain, but all five amino acid residues involved in the active site of ricin A-chain are conserved in RPSI.  相似文献   

7.
CD19 (B4) is a signal transduction molecule restricted to the B-cell lineage and the target of the immunotoxin anti-B4-blocked ricin (anti-B4-bR), which is composed of the monoclonal antibody (MoAb) anti-B4 and the modified plant toxin blocked ricin. To explore the influence of conjugation of blocked ricin to anti-B4 on functional activation of CD19, we investigated the effects of anti-B4-bR, and that of unconjugated anti-B4, on intracellular calcium mobilization and ligand/receptor internalization. The data showed that anti-B4-bR was more potent than anti-B4 in triggering cell calcium mobilization. Two other immunotoxins that bind to the B-cell surface, anti-CD20-bR and anti-CD38-bR, were devoid of the calcium increasing effect of anti-B4-bR. Furthermore, anti-B4 conjugated to ricin A-chain was also without effect in Namalwa cells, indicating that the ricin B-chain component was required for anti-B4-bR effect. Anti-B4-bR-induced calcium mobilization was inhibited in the presence of lactose, yet the calcium response induced by cross-linking anti-B4-bR with a second step antibody was not affected. The extent of CD19 modulation induced by anti-B4-bR was higher than that induced by anti-B4, and lactose dampened the effect of the immunotoxin down to that of the MoAb. Moreover, the number of internalized immunotoxin molecules was higher than that of unconjugated MoAb. Although a mechanism involving dimerization of the immunotoxin cannot be excluded, our findings suggest that the residual binding activity of the blocked ricin B-chain to cell surface molecules plays an important role in the greater calcium fluxes and greater internalization rate of anti-B4-bR, and is of functional significance in the mechanism of intoxication of cells by the immunotoxin.  相似文献   

8.
The main feature distinguishing cathepsin B from other cysteine proteases of the papain family is the presence of a large insertion loop, termed the occluding loop, which occupies the S' subsites of the enzyme. The loop is held in place mainly by two contacts with the rest of the enzyme, involving residues His110 and Arg116 on the loop that form salt bridges with Asp22 and Asp224, respectively. The influence of this loop on the endopeptidase activity of cathepsin B has been investigated using site-directed mutagenesis and internally quenched fluorogenic (IQF) substrates. Wild-type cathepsin B displays poor activity against the substrates Abz-AFRSAAQ-EDDnp and Abz-QVVAGA-EDDnp as compared to cathepsin L and papain. Appreciable increases in kcat/KM were observed for cathepsin B containing the single mutations D22A, H110A, R116A, and D224A. The highest activity however is observed for mutants where both loop to enzyme contacts are disrupted. For the triple-mutant D22A/H110A/R116A, an optimum kcat/KM value of 12 x 10(5) M-1 s-1 was obtained for hydrolysis of Abz-AFRSAAQ-EDDnp, which corresponds to a 600-fold increase relative to wild-type cathepsin B and approaches the level of activity observed with cathepsin L or papain. By comparison, the mutations have little effect on the hydrolysis of Cbz-FR-MCA. The influence of the mutations on the pH dependency of activity also indicates that the complexity of pH activity profiles normally observed for cathepsin B is related to the presence of the occluding loop. The major increase in endopeptidase activity is attributed to an increase in loop "flexibility" and suggests that the occluding loop might move when an endopeptidase substrate binds to the enzyme. The possible contribution of these interactions in regulating endopeptidase activity and the implications for cathepsin B activity in physiological or pathological conditions are discussed.  相似文献   

9.
Various proteinases have been postulated to function in limited proteolysis of insulin-like growth factor binding proteins (IGFBPs) contributing to the regulation of IGF bioavailability. In this study, we report on the in vitro degradation of IGFs and IGFBPs by the purified acidic aspartylprotease cathepsin D that has been shown to proteolyze IGFBP-3. Recombinant human [125I] IGFBP-1 to -5 were processed by cathepsin D to fragments of defined sizes in a concentration dependent manner, whereas IGFBP-6 was not degraded. Ligand blotting revealed that none of the IGFBP-1 or -3 fragments formed by cathepsin D retain their ability to bind IGF. By N-terminal sequence analysis of nonglycosylated IGFBP-3 fragments produced by cathepsin D, at least four different cleavage sites were identified. Some of these cleavage sites were identical or differed by one amino acid from sites used by other IGFBP proteases described. The IGFBP-3 and -4 cleavage sites produced by cathepsin D are located in the nonconserved central region. IGF-I and -II, but not the unrelated platelet-derived growth factor BB, were degraded by cathepsin D in a time and concentration-dependent manner. We speculate that the major functional site of cathepsin D is intracellular and may be involved 1) in the selected clearance either of IGFBP or IGFs via different endocytic pathways or 2) in the general lysosomal inactivation of the IGF system.  相似文献   

10.
Activated polymorphonuclear neutrophils (PMNs) have been shown to be cytotoxic to rat hepatic parenchymal cells in vitro. This cytotoxicity could be observed without direct cell-cell contact, since the conditioned medium from PMNs activated with formyl-Met-Leu-Phe (fMLP) was effective in hepatocyte killing. To identify the toxic factor(s) released by PMNs, degranulation was induced by fMLP in PMNs pretreated with cytochalasin B. The contents released from the phagocytes were subjected to gel filtration on a Sephadex G-100 column. Resulting fractions were tested for cytotoxicity to isolated hepatocytes by using release of alanine aminotransferase as a marker for hepatocyte injury. Cytotoxicity was associated with fractions containing cathepsin G and elastase and not with other fractions, including those containing myeloperoxidase. The former two enzymes were purified to homogeneity with a carboxymethyl cellulose column. Each of these enzymes demonstrated concentration-dependent cytotoxicity to hepatocytes at concentrations > 2 microgram/mL. Moreover, they exhibited an additive cytotoxic effect. Effective concentrations for the combined cathepsin G and elastase in the incubation mixture were similar to the concentrations of these enzymes in PMN-conditioned medium that produced cytotoxicity to hepatocytes. Cytotoxicity of either purified enzyme or of conditioned medium could be prevented by plasma alpha-1-antitrypsin or soybean trypsin-chymotrypsin inhibitor, which were also potent inhibitors of enzymic activity of both cathepsin G and elastase. By contrast, the serine protease inhibitors, aprotinin and 4-(2-aminoethyl)-benzene-sulfonyl fluoride, were less effective in inhibiting cathepsin G and elastase activities as well as cytotoxicity caused by the purified proteases or PMN-conditioned medium. These results support the hypothesis that cathepsin G and elastase are important mediators of hepatic parenchymal cell killing produced by activated PMNs in vitro.  相似文献   

11.
Activity of lysosomal (cathepsins A,B,C,D and E) and nonlysosomal proteases (cathepsin G, elastase, collagenase, prolidase, prolinase) was evaluated in fibrosarcoma induced in rats by methylcholanthrene. No differences were found in the activity of the examined proteases in tumours of different size in the external, intermediate and central spheres of these tumours. Activity of cathepsins A,B,C,D,E and G, prolidase and prolinase was higher in the fibrosarcoma and activity of collagenase and elastase was lower than in the rat skin.  相似文献   

12.
The mode of action of ribosome-inactivating proteins (RIPs) has, for many years, been considered to be depurination of a specific adenyl residue of ribosomal RNA, resulting in inhibition of protein synthesis. Recently, this view has been challenged by the observation that many RIP preparations have significant DNase activity in addition to their N-glycosidase activity. In this study, we have investigated the putative DNase activity of two RIPs, ricin and pokeweed antiviral protein (PAP), and show that, in both cases, the DNase activity is due to the presence of contaminating nucleases. The N-glycosidase and DNase activities of PAP were separately and specifically inactivated by chemical modification and heat. Gel filtration of ricin allowed physical separation of the two activities. Furthermore, neither recombinant PAP nor recombinant ricin A-chain purified from Escherichia coli displayed DNase activity.  相似文献   

13.
Herpes simplex virus (HSV) glycoprotein D (gD) is modified with mannose 6-phosphate (M6P) and binds to M6P receptors (MPRs). MPRs are involved in the well-characterized pathway by which lysosomal enzymes are directed to lysosomes via a network of endosomal membranes. Based on the impaired ability of HSV to form plaques under conditions in which glycoproteins could not interact with MPRs, we proposed that MPRs may function during HSV egress or cell-to-cell spread (C. R. Brunetti, R. L. Burke, B. Hoflack, T. Ludwig, K. S. Dingwell, and D. C. Johnson, J. Virol. 69:3517-3528, 1995). To further analyze M6P modification and intracellular trafficking of gD in the absence of other HSV proteins, adenovirus (Ad) vectors were used to express soluble and membrane-anchored forms of gD. Both membrane-bound and soluble gD were modified with M6P residues and were localized to endosomes that contained the 275-kDa MPR or the transferrin receptor. Similar results were observed in HSV-infected cells. Cell fractionation experiments showed that gD was not present in lysosomes. However, a mutant form of gD and another HSV glycoprotein, gI, that were not modified with M6P were also found in endosomes in HSV-infected cells. Moreover, a substantial fraction of the HSV nucleocapsid protein VP6 was found in endosomes, consistent with accumulation of virions in an endosomal compartment. Therefore, it appears that HSV glycoproteins and virions are directed to endosomes, by M6P-dependent as well as by M6P-independent mechanisms, either as part of the virus egress pathway or by endocytosis from the cell surface.  相似文献   

14.
Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B-/- or Cat D-/- antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B-/- splenocytes, as it did in Cat D-/- cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.  相似文献   

15.
Ricin is a cytotoxic plant protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond at position A4324 in eukaryotic 28S rRNA. Recent studies showed that a four-nucleotide loop, GAGA, can function as a minimum substrate for ricin (the first adenosine corresponds to the site of depurination). We previously clarified the solution structure of this loop by NMR spectroscopy [Orita et al. (1993) Nucleic Acids Res. 21, 5670-5678]. To elucidate further details of the structural basis for recognition of its substrate by ricin, we studied the properties of a synthetic dodecanucleotide, r1C2U3C4A5G6dA7G8A9U10G11A12G (6dA12mer), which forms an RNA hairpin structure with a GdAGA loop and in which the site of depurination is changed from adenosine to 2'-deoxyadenosine. The N-glycosidase activity against the GdAGA loop of the A-chain of ricin was 26 times higher than that against the GAGA loop. NMR studies indicated that the overall structure of the GdAGA loop was similar to that of the GAGA loop with the exception of the sugar puckers of 6dA and 7G. Therefore, it appears that the 2'-hydroxyl group of adenosine at the depurination site (6A) does not participate in the recognition by ricin of the substrate. Since the 2'-hydroxyl group can potentially destabilize the developing positive charge of the putative transition state intermediate, an oxycarbonium ion, the electronic effect may explain, at least in part, the faster rate of depurination of the GdAGA loop compared to that of GAGA loop. We also show that the amino group of 7G is essential for substrate recognition the ricin A-chain.  相似文献   

16.
Previous studies have shown that lysine residues on the surface of cathepsins and other lysosomal proteins are a shared component of the recognition structure involved in mannose phosphorylation. In this study, the involvement of specific lysine residues in mannose phosphorylation of cathepsin D was explored by site-directed mutagenesis. Mutation of two lysine residues in the mature portion of the protein, Lys-203 and Lys-293, cooperated to inhibit mannose phosphorylation by 70%. Other positively charged residues could not substitute for lysine at these positions, and comparison of thermal denaturation curves for the wild type and mutant proteins indicated that the inhibition could not be explained by alterations in protein folding. Structural comparisons of the two lysine residues with those required for phosphorylation of cathepsin L, using models generated from recently acquired crystal structures, revealed several relevant similarities. On both molecules, the lysine residues were positioned approximately 34 A apart (34.06 A for cathepsin D and 33.80 A for cathepsin L). When the lysine pairs were superimposed, N-linked glycosylation sites on the two proteins were found to be oriented so that oligosaccharides extending out from the sites could share a common region of space. Further similarities in the local environments of the critical lysines were also observed. These results provide details for a common lysosomal targeting structure based on a specific arrangement of lysine residues with respect to each other and to glycosylation sites on the surface of lysosomal proteins.  相似文献   

17.
Endocytosis and intracellular transport of ricin were studied in stable transfected HeLa cells where overexpression of wild-type (WT) or mutant dynamin is regulated by tetracycline. Overexpression of the temperature-sensitive mutant dynG273D at the nonpermissive temperature or the dynK44A mutant inhibits clathrin-dependent endocytosis (Damke, H., T. Baba, A.M. van der Blieck, and S.L. Schmid. 1995. J. Cell Biol. 131: 69-80; Damke, H., T. Baba, D.E. Warnock, and S.L. Schmid. 1994. J. Cell Biol. 127:915-934). Under these conditions, ricin was endocytosed at a normal level. Surprisingly, overexpression of both mutants made the cells less sensitive to ricin. Butyric acid and trichostatin A treatment enhanced dynamin overexpression and increased the difference in toxin sensitivity between cells with normal and mutant dynamin. Intoxication with ricin seems to require toxin transport to the Golgi apparatus (Sandirg, K., and B. van Deurs. 1996. Physiol. Rev. 76:949-966), and this process was monitored by measuring the incorporation of radioactive sulfate into a modified ricin molecule containing a tyrosine sulfation site. The sulfation of ricin was much greater in cells expressing dynWT than in cells expressing dynK44A. Ultrastructural analysis using a ricin-HRP conjugate confirmed that transport to the Golgi apparatus was severely inhibited in cells expressing dynK44A. In contrast, ricin transport to lysosomes as measured by degradation of 125I-ricin was essentially unchanged in cells expressing dynK44A. These data demonstrate that although ricin is internalized by clathrin-independent endocytosis in cells expressing mutant dynamin, there is a strong and apparently selective inhibition of ricin transport to the Golgi apparatus. Also, in cells with mutant dynamin, there is a redistribution of the mannose-6-phosphate receptor.  相似文献   

18.
A proteinase accumulated in breast secretions from women with breast cancer has been characterised. Inhibition of the proteolytic activity of breast secretions by pepstatin A showed that the main enzyme involved was an aspartyl proteinase. Determination of its cleavage specificity by SDS-PAGE and amino acid sequence analysis revealed that it was identical to that of cathepsin D, an aspartyl proteinase suggested to be involved in breast cancer development. The identity between both proteins was further confirmed by immunological analysis with monoclonal antibodies against cathepsin D. Quantification of cathepsin D in nipple fluids from 41 women with benign or malignant breast diseases and from 19 control women without breast pathology revealed the presence of variable amounts of this proteinase. The average concentration of cathepsin D in breast secretions from cancer-bearing breasts was 7.2 +/- 2.2 fmol micrograms of protein, which was significantly higher than those of nipple fluids from control women (2.9 +/- 0.6 fmol micrograms-1) (P = 0.04) or from patients with benign breast diseases (2.1 +/- 0.3 fmol micrograms-1) (P = 0.004). Though the number of cancer patients studied was small (n = 21), no correlations were found with cytosolic concentrations of cathepsin D or oestrogen receptors, neither with other parameters such as tumour size, histological grade, axillary node involvement or menopausal status.  相似文献   

19.
Cysteine proteases (cathepsin B and L), the serine protease urokinase-type plasminogen activator and its inhibitor type-1 play an important part in cancer invasion and metastasis. The authors determined the protease concentrations in gastric cancer tissues, using the ELISA method, in patients with gastric cancer. They evaluated the prognostic role of proteases and the relationship that these proteases may have with other histomorphological prognostic parameters such as tumor staging, grading, histotype, Borrmann classification. The Cox survival analysis showed that cathepsin B (p = 0.002), urokinase-type plasminogen activator (p = 0.0001) and the inhibitor type-1 (p = 0.0004) significantly correlated with poor prognosis. The tumor staging, grading, Borrmann classification correlated also significantly with survival time. Urokinase-type plasminogen activator was selected as the single independent variable in the Cox model (p = 0.0001).  相似文献   

20.
Redistribution of lysosomes to the cell surface and secretion of lysosomal proteases appear to be general phenomena in cells that participate in local proteolysis. In the present study, we have determined whether malignant progression affects the intracellular distribution and secretion of the lysosomal protease cathepsin B in three model systems, each of which consists of cell pairs that differ in their degree of malignancy. The intracellular distribution of vesicles staining for cathepsin B was evaluated by immunofluorescent microscopy and the secretion of cathepsin B was evaluated by two complementary techniques: stopped assays of activity secreted into culture media; and continuous assays of activity secreted from viable (> or = 95%) cells growing on coverslips. We observed that the intracellular distribution of cathepsin B+ vesicles was more peripheral in the cells of higher malignancy in all three model systems and that active cathepsin B was secreted constitutively from these cells. Because an acidic pericellular pH has been shown to induce translocation of lysosomes in macrophages and fibroblasts, we evaluated the intracellular distribution of cathepsin B+ vesicles and secretion of cathepsin B in cell pairs incubated at slightly acidic pH. Acidic pericellular pH induced a redistribution of cathepsin B+ vesicles toward the cell periphery. In the more malignant cells, this resulted with time in reduced intracellular staining for cathepsin B and enhanced secretion of active cathepsin B. Translocation and secretion of cathepsin B were dependent on a functional microtubular system. Both the redistribution of cathepsin B+ vesicles toward the cell surface induced by acidic pH and the constitutive and acidic pH-induced secretion of active cathepsin B could be inhibited by microtubule poisons and stabilizers. We suggest that the redistribution of active cathepsin B to the surface of malignant cells and its secretion may facilitate invasion of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号