首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a modified binary particle swarm optimization (MBPSO) method for feature selection with the simultaneous optimization of SVM kernel parameter setting, applied to mortality prediction in septic patients. An enhanced version of binary particle swarm optimization, designed to cope with premature convergence of the BPSO algorithm is proposed. MBPSO control the swarm variability using the velocity and the similarity between best swarm solutions. This paper uses support vector machines in a wrapper approach, where the kernel parameters are optimized at the same time. The approach is applied to predict the outcome (survived or deceased) of patients with septic shock. Further, MBPSO is tested in several benchmark datasets and is compared with other PSO based algorithms and genetic algorithms (GA). The experimental results showed that the proposed approach can correctly select the discriminating input features and also achieve high classification accuracy, specially when compared to other PSO based algorithms. When compared to GA, MBPSO is similar in terms of accuracy, but the subset solutions have less selected features.  相似文献   

2.
Cooperative coevolution (CC) was used to improve the performance of evolutionary algorithms (EAs) on complex optimization problems in a divide-and-conquer way. In this paper, we show that the CC framework can be very helpful to improve the performance of particle swarm optimization (PSO) on clustering high-dimensional datasets. Based on CC framework, the original partitional clustering problem is first decomposed to several subproblems, each of which is then evolved by an optimizer independently. We employ a very simple but efficient optimization algorithm, namely bare-bone particle swarm optimization (BPSO), as the optimizer to solve each subproblem cooperatively. In addition, we design a new centroid-based encoding schema for each particle and apply the Chernoff bounds to decide a proper population size. The experimental results on synthetic and real-life datasets illustrate the effectiveness and efficiency of the BPSO and CC framework. The comparisons show the proposed algorithm significantly outperforms five EA-based clustering algorithms, i.e., PSO, SRPSO, ACO, ABC and DE, and K-means on most of the datasets.  相似文献   

3.
多策略协同进化粒子群优化算法   总被引:1,自引:0,他引:1  
张洁  裴芳 《计算机应用研究》2013,30(10):2965-2967
为了提高粒子群优化(PSO)算法的优化性能, 提出了一种多策略协同进化PSO(MSCPSO)算法。该方法引入了多策略进化模式和多子群协同进化机制, 将整个种群划分为多个子群, 每个子群中的粒子按照不同的进化策略产生新的粒子。子群周期性地更新共享信息, 以加快算法的收敛速度。通过六个基准函数实验, 仿真结果表明, 新算法在计算精度和收敛速度方面均优于其他七种PSO算法。  相似文献   

4.
为了利用演化算法求解离散域上的组合优化问题,借鉴遗传算法(GA)、二进制粒子群优化(BPSO)和二进制差分演化(HBDE)中的映射方法,提出了一种基于映射变换思想设计离散演化算法的实用方法——编码转换法(ETM),并利用一个简单有效的编码转化函数给出了求解组合优化问题的离散演化算法一般算法框架A-DisEA.为了说明ETM的实用性与有效性,首先基于A-DisEA给出了一个离散粒子群优化算法(DisPSO),然后分别利用BPSO、HBDE和DisPSO等求解集合联盟背包问题和折扣{0-1}背包问题,通过对计算结果的比较表明:BPSO、HBDE和DisPSO的求解性能均优于GA,这不仅说明基于ETM的离散演化算法在求解KP问题方面具有良好的性能,同时也说明利用ETM方法设计离散演化算法是一种简单且有效的实用方法.  相似文献   

5.
Glowworm swarm optimization (GSO) algorithm is the one of the newest nature inspired heuristics for optimization problems. In order to enhances accuracy and convergence rate of the GSO, two strategies about the movement phase of GSO are proposed. One is the greedy acceptance criteria for the glowworms update their position one-dimension by one-dimension. The other is the new movement formulas which are inspired by artificial bee colony algorithm (ABC) and particle swarm optimization (PSO). To compare and analyze the performance of our proposed improvement GSO, a number of experiments are carried out on a set of well-known benchmark global optimization problems. The effects of the parameters about the improvement algorithms are discussed by uniform design experiment. Numerical results reveal that the proposed algorithms can find better solutions when compared to classical GSO and other heuristic algorithms and are powerful search algorithms for various global optimization problems.  相似文献   

6.
Many real-world problems belong to the family of discrete optimization problems. Most of these problems are NP-hard and difficult to solve efficiently using classical linear and convex optimization methods. In addition, the computational difficulties of these optimization tasks increase rapidly with the increasing number of decision variables. A further difficulty can be also caused by the search space being intrinsically multimodal and non-convex. In such a case, it is more desirable to have an effective optimization method that can cope better with these problem characteristics. Binary particle swarm optimization (BPSO) is a simple and effective discrete optimization method. The original BPSO and its variants have been used to solve a number of classic discrete optimization problems. However, it is reported that the original BPSO and its variants are unable to provide satisfactory results due to the use of inappropriate transfer functions. More specifically, these transfer functions are unable to provide BPSO a good balance between exploration and exploitation in the search space, limiting their performances. To overcome this problem, this paper proposes to employ a time-varying transfer function in the BPSO, namely TVT-BPSO. To understand the search behaviour of the TVT-BPSO, we provide a systematic analysis of its exploration and exploitation capability. Our experimental results demonstrate that TVT-BPSO outperforms existing BPSO variants on both low-dimensional and high-dimensional classical 0–1 knapsack problems, as well as a 200-member truss problem, suggesting that TVT-BPSO is able to better scale to high dimensional combinatorial problems than the existing BPSO variants and other metaheuristic algorithms.  相似文献   

7.
This paper proposes a new improved binary PSO (IBPSO) method to solve the unit commitment (UC) problem, which is integrated binary particle swarm optimization (BPSO) with lambda-iteration method. The IBPSO is improved by priority list based on the unit characteristics and heuristic search strategies to repair the spinning reserve and minimum up/down time constraints. To verify the advantages of the IBPSO method, the IBPSO is tested and compared to the other methods on the systems with the number of units in the range of 10–100. Numerical results demonstrate that the IBPSO is superior to other methods reported in the literature in terms of lower production cost and shorter computational time.  相似文献   

8.
Particle swarm optimization is a stochastic population-based algorithm based on social interaction of bird flocking or fish schooling. In this paper, a new adaptive inertia weight adjusting approach is proposed based on Bayesian techniques in PSO, which is used to set up a sound tradeoff between the exploration and exploitation characteristics. It applies the Bayesian techniques to enhance the PSO's searching ability in the exploitation of past particle positions and uses the cauchy mutation for exploring the better solution. A suite of benchmark functions are employed to test the performance of the proposed method. The results demonstrate that the new method exhibits higher accuracy and faster convergence rate than other inertia weight adjusting methods in multimodal and unimodal functions. Furthermore, to show the generalization ability of BPSO method, it is compared with other types of improved PSO algorithms, which also performs well.  相似文献   

9.
Feature selection is a useful pre-processing technique for solving classification problems. The challenge of solving the feature selection problem lies in applying evolutionary algorithms capable of handling the huge number of features typically involved. Generally, given classification data may contain useless, redundant or misleading features. To increase classification accuracy, the primary objective is to remove irrelevant features in the feature space and to correctly identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully to solving feature selection problems. In this paper, two kinds of chaotic maps—so-called logistic maps and tent maps—are embedded in BPSO. The purpose of chaotic maps is to determine the inertia weight of the BPSO. We propose chaotic binary particle swarm optimization (CBPSO) to implement the feature selection, in which the K-nearest neighbor (K-NN) method with leave-one-out cross-validation (LOOCV) serves as a classifier for evaluating classification accuracies. The proposed feature selection method shows promising results with respect to the number of feature subsets. The classification accuracy is superior to other methods from the literature.  相似文献   

10.
二进制粒子群算法(BPSO)由于规则简单、参数设置较少等优点被广泛应用到各领域,但是其具有过强的全局搜索能力,缺乏局部的搜索能力等缺陷。针对BPSO存在的缺陷很多文献提出了改进方法,但是针对转换函数的改进较少。通过定义粒子间的距离来分析出BPSO所存在的缺陷,从而进一步分析BPSO中S型转换函数的缺点,并且有针对性地提出更符合BPSO要求的V型转换函数。实验结果表明,所提V型转换函数能克服原始BPSO的缺陷,相比S型转换函数以及现有文献所提的V型转换函数更能提升算法的性能,得到更高的分类准确率。  相似文献   

11.
Sentiment classification is one of the important tasks in text mining, which is to classify documents according to their opinion or sentiment. Documents in sentiment classification can be represented in the form of feature vectors, which are employed by machine learning algorithms to perform classification. For the feature vectors, the feature selection process is necessary. In this paper, we will propose a feature selection method called fitness proportionate selection binary particle swarm optimization (F-BPSO). Binary particle swarm optimization (BPSO) is the binary version of particle swam optimization and can be applied to feature selection domain. F-BPSO is a modification of BPSO and can overcome the problems of traditional BPSO including unreasonable update formula of velocity and lack of evaluation on every single feature. Then, some detailed changes are made on the original F-BPSO including using fitness sum instead of average fitness in the fitness proportionate selection step. The modified method is, thus, called fitness sum proportionate selection binary particle swarm optimization (FS-BPSO). Moreover, further modifications are made on the FS-BPSO method to make it more suitable for sentiment classification-oriented feature selection domain. The modified method is named as SCO-FS-BPSO where SCO stands for “sentiment classification-oriented”. Experimental results show that in benchmark datasets original F-BPSO is superior to traditional BPSO in feature selection performance and FS-BPSO outperforms original F-BPSO. Besides, in sentiment classification domain, SCO-FS-BPSO which is modified specially for sentiment classification is superior to traditional feature selection methods on subjective consumer review datasets.  相似文献   

12.
田红军  汪镭  吴启迪 《控制与决策》2017,32(10):1729-1738
为了提高多目标优化算法的求解性能,提出一种启发式的基于种群的全局搜索与局部搜索相结合的多目标进化算法混合框架.该框架采用模块化、系统化的设计思想,不同模块可以采用不同策略构成不同的算法.采用经典的改进非支配排序遗传算法(NSGA-II)和基于分解的多目标进化算法(MOEA/D)作为进化算法的模块算法来验证所提混合框架的有效性.数值实验表明,所提混合框架具有良好性能,可以兼顾算法求解的多样性和收敛性,有效提升现有多目标进化算法的求解性能.  相似文献   

13.
混合量子进化算法及其应用   总被引:1,自引:0,他引:1  
文章将量子进化算法(QEA)和粒子群算法(PSO)互相结合,提出了两种混合量子进化算法。第一种算法叫做嵌入式粒子群量子进化算法,其主要思想是将简化的PSO进化方程嵌入QEA的进化操作中,简化了QEA算法的结构,增强了QEA跳出局部极值的能力。第二种算法叫做量子二进制粒子群算法,其主要思想是将QEA中的量子染色体的概念引入二进制粒子群算法(BPSO),提高了BPSO算法保持种群多样性的能力和运算速度。通过对0-1背包问题和多用户检测问题的求解表明,新的算法不仅操作更简单,而且全局搜索能力有了显著的提高。  相似文献   

14.
针对原始病理图像经软件提取形态学特征后存在高维度,以及医学领域上样本的少量性问题,提出ReliefF-HEPSO头颈癌病理图像特征选择算法。该算法构建了多层次降维框架,首先根据特征和类别的相关性,利用ReliefF算法确定不同的特征权重,实现初步降维。其次利用进化神经策略(ENS)丰富二进制粒子群算法(BPSO)的种群的多样性,提出混合二进制进化粒子群算法(HEPSO)对候选特征子集完成最佳特征子集的自动寻找。与7种特征选择算法的实验对比结果证明,该算法能更有效筛选出高相关性的病理图像形态学特征,实现快速降维,以较少特征获得较高分类性能。  相似文献   

15.
由于微种群教与学优化算法的种群规模较小, 故其种群多样性很难维持. 为提高微种群教与学优化算法的搜索性能, 提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-source gene learning, MTLBO-MGL). 在MTLBO-MGL算法中, 将教阶段和学阶段根据随机选择策略来对个体进行基因水平上的进化操作; 并从基因层面上对种群多样性进行检测和使用稀疏谱聚类方法对种群的每个维度进行聚类. 然后, 根据多样性检测和聚类结果, 选择不同的进化策略来提高所提算法的搜索性能. 在28个测试函数上, 通过将所提算法与其他4种微种群进化算法作对比, 证明了所提算法的整体性能要显著好于所对比的4种算法. 本文还将所提算法应用于无人机三维路径规划问题, 结果表明MTLBO-MGL算法能够在该问题上取得较好结果.  相似文献   

16.
加速收敛的粒子群优化算法   总被引:5,自引:0,他引:5  
任子晖  王坚 《控制与决策》2011,26(2):201-206
在基本粒子群优化算法的理论分析的基础上,提出一种加速收敛的粒子群优化算法,并从理论上证明了该算法的快速收敛性,同时对该算法中的参数进行了优化.为了防止其在快速收敛的同时陷入局部最优,采用依赖部分最差粒子信息的变异操作.最后通过与其他几种经典粒子群优化算法的性能比较,表明了该算法的高效和稳健,且明显优于现有的几种经典的粒子群算法.  相似文献   

17.
Multigrid methods have been proven to be an efficient approach in accelerating the convergence rate of numerical algorithms for solving partial differential equations. This paper investigates whether multigrid methods are helpful to accelerate the convergence rate of evolutionary algorithms for solving global optimization problems. A novel multigrid evolutionary algorithm is proposed and its convergence is proven. The algorithm is tested on a set of 13 well-known benchmark functions. Experiment results demonstrate that multigrid methods can accelerate the convergence rate of evolutionary algorithms and improve their performance.  相似文献   

18.
为了改善粒子群优化算法的性能,引入了"鲶鱼效应"思想,改造粒子群个体的进化策略,用混沌方法改良了种群搜索策略,把这两者结合起来,既提高种群的广度搜索能力,又提升深度搜索能力,跟差分进化算法进行混合,算法优势互补,形成一种新型的混合算法,更好地协调广度搜索和深度搜索之间的矛盾,提升算法性能。经过对三个标准函数的测试,仿真结果表明该算法在逃离局部陷阱能力和搜索精度均有显著提高。  相似文献   

19.
一种更简化而高效的粒子群优化算法   总被引:66,自引:0,他引:66  
胡旺  李志蜀 《软件学报》2007,18(4):861-868
针对基本粒子群优化(basic particle swarm optimization,简称bPSO)算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策略加以改进,提出了简化粒子群优化(simple particle swarm optimization,简称sPSO)算法、带极值扰动粒子群优化(extremum disturbed particle swarm optimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(ext  相似文献   

20.
Biological data often consist of redundant and irrelevant features. These features can lead to misleading in modeling the algorithms and overfitting problem. Without a feature selection method, it is difficult for the existing models to accurately capture the patterns on data. The aim of feature selection is to choose a small number of relevant or significant features to enhance the performance of the classification. Existing feature selection methods suffer from the problems such as becoming stuck in local optima and being computationally expensive. To solve these problems, an efficient global search technique is needed.Black Hole Algorithm (BHA) is an efficient and new global search technique, inspired by the behavior of black hole, which is being applied to solve several optimization problems. However, the potential of BHA for feature selection has not been investigated yet. This paper proposes a Binary version of Black Hole Algorithm called BBHA for solving feature selection problem in biological data. The BBHA is an extension of existing BHA through appropriate binarization. Moreover, the performances of six well-known decision tree classifiers (Random Forest (RF), Bagging, C5.0, C4.5, Boosted C5.0, and CART) are compared in this study to employ the best one as an evaluator of proposed algorithm.The performance of the proposed algorithm is tested upon eight publicly available biological datasets and is compared with Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Correlation based Feature Selection (CFS) in terms of accuracy, sensitivity, specificity, Matthews’ Correlation Coefficient (MCC), and Area Under the receiver operating characteristic (ROC) Curve (AUC). In order to verify the applicability and generality of the BBHA, it was integrated with Naive Bayes (NB) classifier and applied on further datasets on the text and image domains.The experimental results confirm that the performance of RF is better than the other decision tree algorithms and the proposed BBHA wrapper based feature selection method is superior to BPSO, GA, SA, and CFS in terms of all criteria. BBHA gives significantly better performance than the BPSO and GA in terms of CPU Time, the number of parameters for configuring the model, and the number of chosen optimized features. Also, BBHA has competitive or better performance than the other methods in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号