首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethanol steam reforming was studied over Ni/Al2O3 catalysts. The effect of support (- and γ-Al2O3), metal loading and a comparison between conventional H2 reduction with an activation method employing a CH4/O2 mixture was investigated. The properties of catalysts were studied by N2 physisorption, X-ray diffraction (XRD) and temperature programmed reduction (TPR). After activity tests, the catalysts were analyzed by scanning electron microscopy (SEM) and thermogravimetric analysis (TG/DTA). Ni supported on γ-Al2O3 was more active for H2 production than the catalyst supported on -Al2O3. Metal loading did not affect the catalytic performance. The alternative activation method with CH4/O2 mixture affected differently the activity and stability of the Ni/γ-Al2O3 and the Ni/-Al2O3 catalyst. This activation method increased significantly the stability of Ni/-Al2O3 compared to H2 reduction. SEM and TG/DTA analysis indicate the formation of filamentous carbon during the CH4/O2 activation step, which is associated with the increasing catalyst activity and stability. The effect of temperature on the type of carbon formed was investigated; indicating that filamentous coke increased activity while encapsulating coke promoted deactivation. A discussion about carbon formation and the influence on the activity is presented.  相似文献   

2.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

3.
Catalytic performance for partial oxidation of methane (POM) to synthesis gas was studied over the Rh/Al2O3 catalysts with Rh loadings between 0.1 and 3 wt%. It was found that the ignition temperature of POM reaction increased with the decreasing of the Rh loadings in the catalysts. For the POM reaction over the catalysts with high (≥1 wt%) Rh loadings, steady-state reactivity was observed. For the reaction over the catalysts with low (≤0.25 wt%) Rh loadings, however, oscillations in CH4 and reaction products (CO, H2, and CO2) were observed. Comparative studies using H2-TPR, O2-TPD and high temperature in situ Raman spectroscopy techniques were carried out in order to elucidate the relation between the redox property of the Rh species in the Rh/Al2O3 with different Rh loadings and the performance of the catalysts for the reaction. Three kinds of oxidized rhodium species, i.e. the rhodium oxide species insignificantly affected by the support (RhOx), that intimately interacting with the Al2O3 surface (RhiOx) and the Rh(AlO2)y species formed by diffusion of rhodium oxides in to sublayers of Al2O3 [C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today, 51 (1999) 93.], were identified by H2-TPR and O2-TPD experiments. Among them, the first two species can be easily reduced by H2 at temperature below 350 °C, while the last one can only be reduced by H2 at temperature above 500 °C. The ignition temperatures of POM reaction over the catalysts are closely related to the temperature at which most of the RhOx and RhiOx species can be reduced by CH4 in the reaction mixture. Compared to the Rh/Al2O3 with high Rh loadings, the catalysts with low Rh loadings contain more RhiOx species which possess stronger RhO bond strength and are more difficult to be reduced than RhOx by the reaction mixture. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during the POM reaction over the Rh/Al2O3 with low Rh loadings can be related to the behaviour of Rh(AlO2)y species in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction.  相似文献   

4.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

5.
The hydrogenation of CO over mixed oxides (RhVO4, Rh2MnO4) supported on SiO2 has been studied after H2 reduction at 300°C and at 500°C, and the results compared with those of unpromoted Rh/SiO2 catalysts. Rh was more highly dispersed (40 Å) after the decomposition of RhVO4 by the H2 reduction than those of Rh2MnO4/SiO2 and unpromoted Rh/SiO2 catalysts. The activity and the selectivity to C2 oxygenates of the mixed-oxide catalysts after the H2 reduction were higher than those of the unpromoted Rh/SiO2 catalysts, but the activity of the RhVO4/SiO2 catalyst increased more dramatically after the decomposition by the H2 reduction at 300°C, and hence the yield of C2 oxygenates increased. These results suggest that a strong metal–oxide interaction (SMOI) was induced by the decomposition of the mixed oxides after the H2 reduction. The catalytic activity and selectivity were reproduced repeatedly by the calcination and reduction treatments of the spent (used) catalyst because of the regeneration of RhVO4 and redispersion of Rh metal.  相似文献   

6.
CH4/CO2 reforming over La2NiO4 and 10%NiO/CeO2–La2O3 catalysts under the condition of supersonic jet expansion was studied via direct monitoring of the reactants and products using the sensitive technique of cavity ring-down spectroscopy. Vibration–rotational absorption lines of CH4, H2O, CO2 and CO molecules were recorded in the near infrared spectral region. Our results indicated that La2NiO4 is superior to 10%NiO/CeO2–La2O3 in performance. In addition, we observed enhanced reverse-water-gas-shift reaction at augmented reaction temperature. The formation of reaction intermediates was also investigated by means of time-of-flight mass spectrometry and there was the detection of CHx+, OH+ and H+ species.  相似文献   

7.
The extent of Rh–niobia interaction in niobia-supported Rh (Rh/Nb2O5), niobia-promoted Rh/SiO2 (Nb2O5–Rh/SiO2) and RhNbO4/SiO2 catalyst after H2 reduction has been investigated by H2 and CO chemisorption measurements. These catalysts have been applied to selective CO oxidation in H2 (CO+H2+O2) and CO hydrogenation (CO+H2), and the results are compared with those of unpromoted Rh/SiO2 catalysts. It has been found that niobia (NbOx) increases the activity and selectivity for both the reactions.  相似文献   

8.
A disk-type Sm0.4Ba0.6Co0.2Fe0.8O3 − δ perovskite-type mixed-conducting membrane was applied to a membrane reactor for the partial oxidation of methane to syngas (CO + H2). The reaction was carried out using Rh (1 wt%)/MgO catalyst by feeding CH4 diluted with Ar. While CH4 conversion increased and CO selectivity slightly decreased with increasing temperature, a high level of CH4 conversion (90%) and a high selectivity to CO (98%) were observed at 1173 K. The oxygen flux was increased under the conditions for the catalytic partial oxidation of CH4 compared with that measured when Ar was fed to the permeation side. We investigated the reaction pathways in the membrane reactor using different membrane reactor configurations and different kinds of gas. In the membrane reactor without the catalyst, the oxygen flux was not improved even when CH4 was fed to the permeation side, whereas the oxygen flux was enhanced when CO or H2 was fed. It is implied that the oxidation of CO and H2 with the surface oxygen on the permeation side improves the oxygen flux through the membrane, and that CO2 and H2O react with CH4 by reforming reactions to form syngas.  相似文献   

9.
This paper presents an investigation into the complex interactions between catalytic combustion and CH4 steam reforming in a co-flow heat exchanger where the surface combustion drives the endothermic steam reforming on opposite sides of separating plates in alternating channel flows. To this end, a simplified transient model was established to assess the stability of a system combining H2 or CH4 combustion over a supported Pd catalyst and CH4 steam reforming over a supported Rh catalyst. The model uses previously reported detailed surface chemistry mechanisms, and results compared favorably with experiments using a flat-plate reactor with simultaneous H2 combustion over a γ-Al2O3-supported Pd catalyst and CH4 steam reforming over a γ-Al2O3-supported Rh catalyst. Results indicate that stable reactor operation is achievable at relatively low inlet temperatures (400 °C) with H2 combustion. Model results for a reactor with CH4 combustion indicated that stable reactor operation with reforming fuel conversion to H2 requires higher inlet temperatures. The results indicate that slow transient decay of conversion, on the order of minutes, can arise due to loss of combustion activity from high-temperature reduction of the Pd catalyst near the reactor entrance. However, model results also show that under preferred conditions, the endothermic reforming can be sustained with adequate conversion to maintain combustion catalyst temperatures within the range where activity is high. A parametric study of combustion inlet stoichiometry, temperature, and velocity reveals that higher combustion fuel/air ratios are preferred with lower inlet temperatures (≤500 °C) while lower fuel/air ratios are necessary at higher inlet temperatures (600 °C).  相似文献   

10.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

11.
During the reactions related to oxidative steam reforming and combustion of methane over -alumina-supported Ni catalysts, the temperature profiles of the catalyst bed were studied using an infrared (IR) thermograph. IR thermographical images revealed an interesting result: that the temperature at the catalyst bed inlet is much higher under CH4/H2O/O2/Ar = 20/10/20/50 than under CH4/H2O/O2/Ar = 10/0/20/70; the former temperature is comparable to that over noble metal catalysts such as Pt and Pd. Based on the temperature-programmed reduction and oxidation measurements over fresh and used catalysts, the metallic Ni is recognized at the catalyst bed inlet under CH4/H2O/O2/Ar = 20/10/20/50, although it is mainly oxidized to NiAl2O4 under CH4/H2O/O2/Ar = 10/0/20/70. This result indicates that the addition of reforming gas (CH4/H2O = 10/10) to the combustion gas (CH4/O2 = 10/20) can stabilize Ni species in the metallic state even under the presence of oxygen in the gas phase. This would account for its extremely high combustion activity.  相似文献   

12.
The oxidation of CH4 over Pt–NiO/δ-Al2O3 has been studied in a fluidised bed reactor as part of a major project on an autothermal (combined oxidation–steam reforming) system for CH4 conversion. The kinetic data were collected between 773 and 893 K and 101 kPa total pressure using CH4 and O2 compositions of 10–35% and 8–30%, respectively. Rate–temperature data were also obtained over alumina-supported monometallic catalysts, Pt and NiO. The bimetallic Pt–NiO system has a lower activation energy (80.8 kJ mol−1) than either Pt (86.45 kJ mol−1) and NiO (103.73 kJ mol−1). The superior performance of the bimetallic catalyst was attributed to chemical synergy. The reaction rate over the Pt–NiO catalyst increased monotonically with CH4 partial pressure but was inhibited by O2. At low partial pressures (<30 kPa), H2O has a detrimental effect on CH4 conversion, whilst above 30 kPa, the rate increased dramatically with water content.  相似文献   

13.
The hydrogenation of CO over an Rh vanadate (RhVO4) catalyst supported on SiO2 (RhVO4/SiO2) has been investigated after H2 reduction at 500°C, and the results are compared with those of vanadia-promoted (V2O5–Rh/SiO2) and unpromoted Rh/SiO2 catalysts. The mean size of Rh particles, which were dispersed by the decomposition of RhVO4 after the H2 reduction, was smaller (41 Å) than those (91–101 Å) of V2O5–Rh/SiO2 and Rh/SiO2 catalysts. The RhVO4/SiO2 catalyst showed higher activity and selectivity to C2 oxygenates than the unpromoted Rh/SiO2 catalyst after the H2 pretreatment. The CO conversion of the RhVO4/SiO2 catalyst was much higher than that of V2O5–Rh/SiO2 catalyst, and the yield of C2 oxygenates increased. We also found that the RhVO4/SiO2 catalyst can be regenerated by calcination or O2 treatment at high temperature after the reaction.  相似文献   

14.
Selective catalytic reduction (SCR) of NO with methane in the presence of excess oxygen has been investigated over a series of Mn-loaded sulfated zirconia (SZ) catalysts. It was found that the Mn/SZ with a metal loading of 2–3 wt.% exhibited high activity for the NO reduction, and the maximum NO conversion over the Mn/SZ catalyst was higher than that over Mn/HZSM-5. NH3–TPD results of the catalysts showed that the sulfation process of the supports resulted in the generation of strong acid sites, which is essential for the SCR of NO with methane. On the other hand, the N2 adsorption and the H2–TPR of the catalysts demonstrated that the presence of the SO42− species promoted the dispersion of the metal species and made the Mn species less reducible. Such an increased dispersion of metal species suppressed the combustion reaction of CH4 by O2 and increased the selectivity towards NO. The Mn/SZ catalysts prepared by different methods exhibited similar activities in the SCR of NO with methane, indicating the importance of SO42−. The most attractive feature of the Mn/SZ catalysts was that they were more tolerant to water and SO2 poisoning than Mn/HZSM-5 catalysts and exhibited higher reversibility after removal of SO2.  相似文献   

15.
Highly dispersed titanium oxide catalysts have been prepared within zeolite cavities as well as in the zeolite framework and utilized as photocatalysts for the reduction of CO2 with H2O to produce CH4 and CH3OH at 328 K. In situ photoluminescence, ESR, diffuse reflectance absorption and XAFS investigations indicate that the titanium oxide species are highly dispersed within the zeolite cavities and framework and exist in tetrahedral coordination. The charge transfer excited state of the highly dispersed titanium oxide species play a significant role in the reduction of CO2 with H2O with a high selectivity for the formation of CH3OH, while the catalysts involving the aggregated octahedrally coordinated titanium oxide species show a high selectivity to produce CH4, being similar to reactions on the powdered TiO2 catalysts. Ti-mesoporous molecular sieves exhibit high photocatalytic reactivity for the formation of CH3OH, its reactivity being much higher than the powdered TiO2 catalysts. The addition of Pt onto the highly dispersed titanium oxide catalysts promotes the charge separation which leads to an increase in the formation of CH4 in place of CH3OH formation.  相似文献   

16.
The partial oxidation of ethanol was investigated over Ru and Pd catalysts supported onto yttria over a wide range of temperatures (473–1073 K). The product distributions obtained over these catalytic systems were correlated with diffuse reflectance infrared spectroscopy analyses (DRIFTS). Results showed that reaction route depended strongly on the type of metal. The decomposition of ethoxy species to CH4 and CO or oxidation to CO2 was promoted by Pd, and the acetaldehyde desorption was predominant over Ru in the low temperature region. Furthermore, the acetate and carbonate formation prevailed over Pd, which explained the lower acetaldehyde selectivity. The presence of CH4 and CO2 at high temperature is assigned to the decomposition of acetate species via carbonates over Pd-based catalysts. Ru was more suitable system for H2 production than Pd by achieving a selectivity of about 59%.  相似文献   

17.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

18.
Sharp NO and O2 desorption peaks, which were caused by the decomposition of nitro and nitrate species over Fe species, were observed in the range of 520–673 K in temperature-programmed desorption (TPD) from Fe-MFI after H2 treatment at 773 K or high-temperature (HT) treatment at 1073 K followed by N2O treatment. The amounts of O2 and NO desorption were dependent on the pretreatment pressure of N2O in the H2 and N2O treatment. The adsorbed species could be regenerated by the H2 and N2O treatment after TPD, and might be considered to be active oxygen species in selective catalytic reduction (SCR) of N2O with CH4. However, the reaction rate of CH4 activation by the adsorbed species formed after the H2 and N2O or the HT and N2O treatment was not so high as that of the CH4 + N2O reaction over the catalyst after O2 treatment. The simultaneous presence of CH4 and N2O is essential for the high activity of the reaction, which suggests that nascent oxygen species formed by N2O dissociation can activate CH4 in the SCR of N2O with CH4.  相似文献   

19.
A. Yee  S. J. Morrison  H. Idriss   《Catalysis Today》2000,63(2-4):327-335
The reactions of ethanol over Rh/CeO2 have been investigated using the techniques of temperature programmed desorption (TPD) and FT-IR spectroscopy, in addition to steady state catalytic tests. A comparison with previous studies of ethanol adsorption over Pd/CeO2 [J. Catal. 186 (1999) 279] and Pt/CeO2 [J. Catal. 191 (2000) 30] catalysts is presented. The apparent activation energy for the reaction was 49, 40, and 43 kJ mol−1 for Rh/CeO2, Pd/CeO2 and Pt/CeO2, respectively, while the turnover number (TON) at 400 K was 5.9, 8.6 and 2.6, respectively. Surface compositions of catalysts were characterised by XPS. A decrease of the atomic O(1s)/Ce(3d) ratio of the CeO2 support indicates its partial reduction upon addition of the noble metal. The extent of reduction per metal atom was in the following order: Pt>Pd>Rh. FT-IR and TPD studies have shown that dehydrogenation of ethanol to acetaldehyde occurred over Pd/CeO2, Pt/CeO2 and Rh/CeO2. Moreover, Rh/CeO2 readily dissociated the C–C bond of ethanol at room temperature to form adsorbed CO (IR bands at 1904–2091 cm−1). This was corroborated by the low desorption temperature of CH4 over Rh/CeO2 (450 K) when compared to that of Pd/CeO2 (550 K) or Pt/CeO2 (585 K).  相似文献   

20.
D. Qin  J. Lapszewicz 《Catalysis Today》1994,21(2-3):551-560
The activity of mixed steam and CO2 reforming of CH4 to produce synthesis gas was investigated and compared with those of steam reforming alone and CO2 reforming alone at 600–900°C under atmosphere pressure on MgO-supported noble metals. Mixed reforming shows a far lower CH4 conversion than the value for thermodynamic equilibrium. The activity decreases following the order Ru,Rh> Ir> Pt,Pd. Little deactivation was observed for Ru, Rh and Ir catalysts. An isotope labelled 13CO2 experiment was carried out in situ for mixed reforming on Rh/MgO and the results suggest that CO2 dissociates as CO-M and O-M. The results of the temperature program reaction (TPR) of mixed reforming shows that CH4 adsorbs and dissociates before reaction starts and that CO2 reforming and steam reforming start simultaneously. A possible reaction mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号