首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A newly developed PbMo/Al2O3 HDS catalyst shows activity and stability that are comparable to or better than the traditional CoMo/Al2O3. Activity is optimum when the atomic ratio PbMo is 16. At that ratio, the generated surface phase(s) display maximum degree of Mo coordinative unsaturation, as measured by low temperature oxygen chemisorption.  相似文献   

2.
CoMo/Al2O3 catalysts were prepared by impregnating Cobalt nitrate solution into oxidic or sulfided Mo/Al2O3. The properties of CoMo/Al2O3 catalysts were characterized by XRD, TPS, oxygen chemisorption and ESR. Catalytic activity of CoMo/Al2O3 catalyst was evaluated by thiophene HDS as a probe reaction. When CoMo/Al2O3 catalyst was prepared by impregnating Cobalt nitrate solution into sulfided Mo/Al2O3, the interaction between Mo and alumina became weaker and the formation of synergic phase was facilitated. These structural changes may explain higher HDS activity of CoMo/Al2O3 catalyst prepared by impregnating Cobalt nitrate solution into sulfided Mo/Al2O3.  相似文献   

3.
《Applied Catalysis A: General》2001,205(1-2):215-225
A series of titania supported molybdenum catalysts were prepared by incipient wetness impregnation method and characterized by BET surface area, XRD, TPR, FTIR, ESCA, and low temperature oxygen chemisorption. Thiophene, cyclohexene and tetrahydrofuran were taken as model compounds for evaluating catalytic activities for hydrodesulfurization (HDS), hydrogenation (HYD), and hydrodeoxygenation (HDO) reactions, respectively. XRD results indicate that molybdenum oxide species are dispersed as a monolayer on the support up to 8 wt.% Mo and the formation of crystalline MoO3 is observed above this loading. FTIR and TPR results showed that molybdenum oxide species were present predominantly in tetrahedral form at lower loading and polymeric octahedral forms are dominant at higher loading. Both oxygen chemisorption and rates of reaction were found to increase with increasing Mo loading up to 8 wt.% and then decrease with further increase in loading. HDS and HYD activities are more or less same but HDO activity is two times higher than HDS and HYD activities. The results are also interpreted with the help of other parameters, like dispersion, equivalent molybdenum surface area, surface coverage, crystalline size, quasi-turnover frequencies and intrinsic activities. ESCA results suggest that electron transfer is taking place from support to metal.  相似文献   

4.
The combination of thiophene hydrodesulfurization (HDS) activity measurements and X-ray photoelectron spectroscopy on flat model systems of sulfided HDS Mo catalysts showed that sulfided Ti-species can act as a promoter in the same way as Co and Ni, although less effectively. This explains the higher thiophene HDS activity and hydrogenation selectivity of Mo/TiO2 compared with Mo/Al2O3, while for Ni-promoted Mo catalysts the difference between the two supports is negligible.  相似文献   

5.
MgO-supported Mo, CoMo and NiMo sulfide hydrotreating catalysts   总被引:2,自引:0,他引:2  
The most common preparation of high surface area MgO (100–500 m2 g−1) is calcination of Mg(OH)2 obtained either by precipitation or MgO hydration or sol–gel method. Preparation of MoO3/MgO catalyst is complicated by the high reactivity of MgO to H2O and MoO3. During conventional aqueous impregnation, MgO is transformed to Mg(OH)2, and well soluble MgMoO4 is easily formed. Alternative methods, that do not impair the starting MgO so strongly, are non-aqueous slurry impregnation and thermal spreading of MoO3. Mo species of MoO3/MgO catalyst are dissolved as MgMoO4 during deposition of Co(Ni) by conventional aqueous impregnation. This can be avoided by using non-aqueous impregnation. Co(Ni)Mo/MgO catalysts must be calcined only at low temperature because Co(Ni)O and MgO easily form a solid solution. Literature data on hydrodesulfurization (HDS) activity of MgO-supported catalysts are often contradictory and do not reproduced well. However, some results suggest that very highly active HDS sites can be obtained using this support. Co(Ni)Mo/MgO catalysts prepared by non-aqueous impregnation and calcined at low temperature exhibited strong synergism in HDS activity. Co(Ni)Mo/MgO catalysts are much less deactivated by coking than their Al2O3-supported counterparts. Hydrodenitrogenation (HDN) activity of Mo/MgO catalyst is similar to the activity of Mo/Al2O3. However, the promotion effect of Co(Ni) in HDN on Co(Ni)Mo/MgO is lower than that on Co(Ni)Mo/Al2O3.  相似文献   

6.
The effect of passivation and presulfidation after carbiding of activated carbon-supported Fe–Mo, Co–Mo and Ni–Mo catalysts on their thiophene HDS activity was evaluated. Catalytic precursors were prepared by co-impregnation of the support with solutions of ammonium heptamolybdate and the promotor nitrates or sulfates. Carbiding was achieved by means of the carbothermal method, employing pure H2 as reductant and the support as the carbon source. Carbided samples were submitted to one out of three types of procedures before HDS tests: (a) passivation at room temperature followed by presulfiding; (b) presulfiding (no passivation); and (c) neither passivation nor sulfiding before HDS. Samples of passivated catalysts prepared from the sulfates of Fe, Co or Ni contained variable amounts of sulfur, as shown by XPS and elemental analysis, while XRD showed only metals and mixed Fe3Mo3C or η-M6Mo6C2 (MCo, or Ni) phases. The nitrate-derived catalysts only presented β-Mo2C and metals (XRD). Sulfur containing catalysts showed high initial activities although deactivate strongly during the first 40 min on the reaction stream, while the unsulfided nitrate-derived samples showed a more stable behavior and lower activities during the 2–3 h of testing. In general, samples submitted to passivation followed by presulfiding showed the higher steady state activities and those neither passivated nor sulfided were the less active. The results show the benefits of a passivating treatment on these carbon-supported catalysts, and point out to the importance of sulfided surface phases in HDS on carbides of transition metal catalysts.  相似文献   

7.
The potential of mesoporous silica–alumina (MSA) material as support for the preparation of sulfided Pt and Pt–Mo catalysts of varying Pt loadings was studied. The catalysts were characterized by their texture, hydrogen adsorption, transmission electron microscopy, temperature programmed reduction (TPR) and by activity in simultaneous hydrodesulfurization (HDS) of thiophene and hydrodenitrogenation (HDN) of pyridine. Sulfided Pt/MSA catalysts with 1.3 and 2 wt.% Pt showed almost the same HDS and higher HDN activities per weight amounts as conventional CoMo and NiMo/Al2O3, respectively. The addition of Pt to sulfided Mo/MSA led to promotion in HDS and HDN with an optimal promoter content close to 0.5 wt.%. The results of TPR showed strong positive effect of Pt on reducibility of the MoS2 phase which obviously reflects in higher activity of the promoted catalysts. The activity of the MSA-supported Pt–Mo catalyst containing 0.5 wt.% Pt was significantly higher than the activity of alumina-supported Pt–Mo catalyst. Generally, Pt–Mo/MSA catalysts promoted by 0.3–2.3 wt.% Pt showed lower HDS and much higher HDN activities as compared to weight amounts of CoMo and NiMo/Al2O3. It is proposed that thiophene HDS and pyridine hydrogenation proceed over Pt/MSA and the majority of Pt–Mo/MSA catalysts on the same type of catalytic sites, which are associated with sulfided Pt and MoS2 phases. On the contrary, piperidine hydrogenolysis takes place on different sites, most likely on metallic Pt fraction or sites created by abstraction of sulfur from MoS2 in the presence of Pt.  相似文献   

8.
Effect of sintering on physico-chemical and catalytic properties of Mo, Co-Mo, Ni-Mosupported on -Al2O3 is reported. Such effects on hydrodesulfurization (HDS), hydrogenation (HYD) and hydrodeoxygenation (HDO) are investigated as a function of sintering temperature. The results indicated that HDS and HYD have different optimum calcination temperatures and these functionalities originate from different sites. The results are discussed in the light of molybdenum sulfide dispersion, promotional effects and phase transformations of active component, promoters and support.  相似文献   

9.
Lei Ni  Ling-Ping Zhou  Kiyoto Matsuishi 《Carbon》2009,47(13):3054-5387
The role of catalyst components in catalysts containing molybdenum, Mo/M/MgO (MNi, Co, and Fe), as well as Mo-free catalysts, M/MgO (MNi, Co, and Fe), for carbon nanotube (CNT) synthesis have been investigated by TEM, XRD, and Raman spectroscopy. CNT synthesis by the catalytic decomposition of CH4 over M/MgO catalysts can proceed at reaction temperatures higher than the decomposition temperature of the metal carbides (Ni3C, Co2C, and Fe3C), which indicates that carbon in the CNT originates from the graphitic carbon formed on the catalyst surface by the decomposition of metal carbides. For all catalysts containing Mo, thin CNT formation starts at an identical temperature of 923 K, corresponding to the decomposition temperature of MoC1−x into Mo2C. The significant effect of the addition of Mo is concerned with the formation of Mo2C in a catalyst particle during CNT synthesis at high reaction temperatures. The presence of a stable Mo2C phase leads to the formation of thin CNT with better crystallinity at high reaction temperatures. The role of Ni, Co, and Fe in the Mo/M/MgO catalysts is ascribed to the dissociation of CH4.  相似文献   

10.
A series of MoO3 catalysts with Mo loadings ranging from 2 to 10 w/w% supported on TiO2 were prepared and investigated by X-ray diffraction (XRD), temperature programmed reduction (TPR) and oxygen chemisorption measurements. Dispersion of molybdena was determined by the oxygen chemisorption at 623 K and by static method on the samples prereduced at the same temperature. At low Mo loadings, i.e. below 6% Mo, molybdenum oxide was found to present in a highly dispersed amorphous state. TPR profiles of MoO3/TiO2 samples suggest that the reduction of MoO3 to Mo proceeds in two stages and the reducibility of MoO3 increases with Mo loading in the catalysts. The catalytic properties were evaluated for the vapor-phase ammoxidation of toluene to benzonitrile and are related to the oxygen chemisorption sites.  相似文献   

11.
Unsupported cobalt-molybdenum sulfide catalysts were prepared from bimetallic CoMo alkyl precursors by in situ activation during the hydrodesulfurization (HDS) of dibenzothiophene (DBT). The bimetallic CoMo precursors were prepared by reaction of tetraalkylammonium thiomolybdate salts, (R4N)2MoS4 (where R = H, methyl, butyl, pentyl or hexyl), with CoCl2 in water at a Co/Mo molar ratio of 0.3. These catalysts exhibit a Swiss-cheese-like morphology, high surface areas (from 52 up to 320 m2/g), high content of carbon (C/Mo = 2.2-3.3) and type IV adsorption-desorption isotherms of nitrogen. The in situ activation of these tetraalkylammonium thiobimetalate precursors leads to a mesoporous structure with pore size ranging from 2 to 4.5 nm. X-ray diffraction showed that the structure of unsupported cobalt-molybdenum sulfide catalysts corresponds to a poorly crystalline structure characteristic of 2H-MoS2 with low-stacked layers. The nature of the alkyl group strongly affects both the surface area and the HDS activity. The catalytic activity is strongly enhanced when using carbon-containing precursors; the CoMo catalysts prepared by in situ activation of Co/[N(C4H9)4]2MoS4 presents the highest HDS activity. The highest surface area of the catalysts was observed for the CoMo catalyst formed from Co/[N(C6H13)4N]2MoS4.  相似文献   

12.
The synthesis of two NiMo/Al2O3 catalysts by the supercritical carbon dioxide/methanol deposition (NiMo‐SCF) and the conventional method of wet coimpregnation (NiMo‐IMP) were conducted. The results of the physical and chemical characterization techniques (adsorption–desorption of nitrogen, oxygen chemisorption, XRD, TPR, TEM, and EDAX) for the NiMo‐SCF and NiMo‐IMP demonstrated high and uniform dispersed deposition of Ni and Mo on the Al2O3 support for the newly developed catalyst. The hydrodesulfurization (HDS) of fuel model compound, dibenzothiophene, was used in the evaluation of the NiMo‐SCF catalyst vs. the commercial catalyst (NiMo‐COM). Higher conversion for the NiMo‐SCF catalyst was obtained. The kinetic analysis of the reaction data was carried out to calculate the reaction rate constant of the synthesized and commercial catalysts in the temperature rang of 543–603 K. Analysis of the experimental data using Arrhenius' law resulted in the calculation of frequency factor and activation energy of the HDS for the two catalysts. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

13.
Two series of Mo and Fe containing catalysts have been prepared over alumina and titania supports using H3PMo12O40 heteropolyacid (HPMo) and Fe salt of HPMo. Catalysts have been characterized by BET, SEM, IR, TPR, XPS methods and by their HDS activity in the reaction of thiophene conversion. The TiO2-supported catalysts with low Mo concentration (6 wt%) show higher HDS activity than the catalyst with 12 wt% Mo. Iron promoting effect (Fe/Mo ~ 0.1) is observed with both, the alumina- and titania-supported catalysts. Iron supported over alumina increases Mo reducibility and decreases it on TiO2-supported catalysts. Compared to alumina-supported catalysts, the TiO2-supported catalysts show higher surface concentration of Mo6+ and Mo5+ in octahedral coordination – Mo(Oh). Iron increases the Mo(Oh) concentration even more. After sulfidation the Fe-containing catalysts show formation of different Mo valence states (Mo4+, Mo5+, Mo6+), Fe–P, Mo–P and/or Fe–Mo–P bonds, which affect the HDS catalytic activity.  相似文献   

14.
Hydrodesulfurization (HDS) of sour crude oil is an effective way to address the corrosion problems in refineries, and is an economic way to process sour crude oil in an existing refinery built for sweet oil. In the current study, the HDS of Siberian crude oil was carried out in a slurry reactor. The Co–Mo, Ni–Mo, and Ni–W catalysts supported on γ-Al2O3 were compared at the temperature of 340 °C and the pressure of 4.5 MPa. The HDS activity follows the order of Co–Mo > Ni–Mo > Ni–W at a high concentration of H2S, and the difference between Co–Mo and Ni–Mo becomes insignificant at a low concentration of H2S. The influence of reaction temperature 320–360 °C and reaction pressure 3–5.5 MPa was investigated, and both play a positive role in the HDS reaction. A kinetic model over Ni–Mo/Al2O3 in the slurry reactor was established. The activation energy is estimated as 60.34 kJ·mol−1; the orders of sulfur components and hydrogen partial pressure are 1.43 and 1.30, respectively. The kinetic parameters are compared with those in a trickle-bed reactor, implying that the mass transfer is greatly enhanced in the slurry reactor. The back mixing effect is present in the slurry reactor and can be reduced by a multi-stage design, which would lead to higher reactor efficiency in industrial application.  相似文献   

15.
Silica-supported molybdenum phosphide, MoP/SiO2 catalysts with different Mo weight loadings were prepared by temperature programmed reduction of the oxidic catalyst precursors, which were prepared via sol-gel technique using ethyl silicate-40 as silica source. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area measurements, and their catalytic activity in hydrodesulfurization (HDS) was tested with dibenzothiophene (DBT) as model compound. XRD analysis revealed the amorphous nature of the catalyst up to 10 wt% Mo loading and the formation of crystalline MoP phase on amorphous silica support with higher Mo loading. BET surface area showed high surface area for catalysts prepared by sol-gel technique with lower Mo content, and the surface area decreased with increasing in Mo loading. The HDS results showed that prepared MoP/SiO2 exhibited high HDS activity and stability toward the catalytic test. Among the series of catalysts prepared, MoP/SiO2 containing 20 wt% Mo was found to be the most active catalyst. And the effects of reaction temperature and hydrogen pressure on conversion and product selectivity were investigated.  相似文献   

16.
Effect of sodium (Na) addition on rhodium phosphide (Rh2P) formation on MFI zeolite, SiO2 and Al2O3 and hydrodesulfurization (HDS) activity were examined. The TPR results revealed that Na addition enhanced reducibility of phosphates. The XRD results indicated that Rh2P phase was easily formed on NaMFI support as compared with on HMFI support. The maximum HDS activity of Rh–P/NaMFI catalyst was obtained at lower reduction temperature and this activity was higher than that of Rh–P/HMFI catalyst. We concluded that since Na would weaken interaction between Al and phosphate, high HDS activity of Rh–P/NaMFI catalyst was observed at lower reduction temperature.  相似文献   

17.
The incorporation effect of tungsten as an activity‐promotional modifier into the Ni‐promoted Mo/γ‐Al2O3 catalyst was studied. Series of W‐incorporated catalysts with different content of tungsten were prepared by changing the impregnation order of nickel and tungsten onto a base Mo/γ‐Al2O3. Catalytic activities were measured from the atmospheric reactions of thiophene hydrodesulfurization (HDS) and ethylene hydrogenation (HYD). The HDS and HYD activities of the WMo/γ‐Al2O3 catalysts (WM series) initially increased and subsequently decreased with increasing content of tungsten as compared with those of their base Mo/γ‐Al2O3. The maximal activity promotion occurred at the W/(W + Mo) atomic ratio 0.025. For the Ni‐promoted Mo/γ‐Al2O3 catalysts, the effect of W incorporation was greatly dependent on the impregnation order of tungsten. The catalysts prepared by impregnating Ni onto the WMo/γ‐Al2O3 catalysts showed the same trend of activity promotion as for the WM series, while those by impregnating W onto a NiMo/γ‐Al2O3 catalyst resulted in lower activities than their base NiMo/γ‐Al2O3 catalyst. To characterize the catalysts, temperature‐programmed reduction and low‐temperature oxygen chemisorption were conducted. The effects of W incorporation on the NiMo‐based catalysts were discussed in reference to those on the CoMo‐based catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Mo/Al2O3 catalysts prepared via fixation of Mo(3-C3H5)4 on Al2O3 or by conventional impregnation (2.2 or 2.9 wt% Mo) have been compared with regard to their catalytic behavior in the metathesis of propene in different temperature ranges (293-323 K, 473 K). Different active sites have been distinguished. A site derived from a Mo(VI) precursor by thermal activation in inert gas exhibits stable activity, with a propene reaction order near 1. Other sites that are derived from a reduced Mo precursor, probably Mo(IV), are of higher activity but unstable with time-on-stream and also at elevated temperatures (>323 K). These sites support the metathesis at a propene reaction order of 0.5 and with activation energies between 10 and 25 kJ/mol depending on unknown structural details. Due to their instability, they cannot contribute to the high-temperature (T > 373 K) metathesis activity observed with Mo/Al2O3 catalysts. The latter is supported by Mo(VI)-derived sites or, at after reduction of catalysts with higher Mo contents, by Mo(IV)-derived sites that are different from those identified in the present study.  相似文献   

19.
The catalytic activity for the reduction of NO by CO of five PdO-MoO3/-Al2O3 catalysts is compared in the presence of varying amounts of oxygen at reaction temperatures from 25 to 550 °C. The samples were prepared by different methods and contain about 2% of Mo and 2% Pd. Results are compared with the activities and selectivities of PdO/ -A12O3 and PdO-MoO3/-Al2O3 containing 2% Pd and 2% Pd + 20% Mo, respectively. All catalysts showed appreciable activity at temperatures between 300 and 550 °C and at stoichiometric ratios,R, of the oxidizing to reducing gases of 0.1 <R < 1.1. The activity of three PdO-MoO3/ -A12O3 catalysts with low concentrations of Mo and Pd was found to be significantly higher than the activity of PdO/-Al2O3 at 1.1 <R < 1.3 and at temperatures between 300 and 500 °C. The improved activity is ascribed to the interaction of the active metals.  相似文献   

20.
《Catalysis communications》2009,10(15):2578-2582
Ammonium thiosulfate ((NH4)2S2O3) was used as an ex situ sulfiding agent to pretreat Mo/Al2O3 catalyst through impregnation. After H2 activation, Mo/Al2O3 presulfided with (NH4)2S2O3 exhibits much higher catalytic activity in thiophene hydrodesulfurization (HDS) than Mo/Al2O3 in situ sulfided by dimethyl disulfide. Through (NH4)2S2O3 presulfidation, Al2O3 support is modified by sulfate groups, leading to a decrease of interaction between Mo and support; this promotes the formation of multi-layer type II MoS2 that contributes to the high HDS activity of the ex situ presulfided Mo/Al2O3 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号