首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Congestive heart failure is often associated with skeletal muscle abnormalities that contribute to early fatigue and acidosis. Up to the present time, however, the mechanisms responsible for these changes are unclear. Myocardial infarctions were produced by coronary ligation in adult Sprague-Dawley rats. At 20 weeks, 10 control rats, and 15 animals with heart failure [defined by elevated LVEDP (26.1 +/- 3.1 v 2.5 +/- 0.5 mmHg) and RV hypertrophy (300 +/- 21 g v 158 +/- 9 mg)] underwent in vivo measurements of total body, and soleus total protein and myosin heavy chain (MHC) synthesis by [3H]leucine constant infusion. Soleus muscle was also analysed for protein content, and MHC isoenzyme content by SDS-PAGE. Northern blotting also was used to determine levels of the mRNA's encoding type I, IIa, IIb, and IIx MHC, alpha-skeletal actin, COX III, SDH and GAPDH. Soleus muscles in heart failure rats were smaller than controls (112 +/- 6 v 126 +/- 5 mg) and the degree of atrophy was significant when corrected for body mass (0.38 +/- 0.02 v 0.46 +/- 0.02 mg/g. P = 0.007). Although there was no significant difference in plasma leucine flux (an index of whole-body protein synthesis), soleus muscle total and MHC synthesis was reduced in heart failure animals. Whereas the Type I MHC isoenzyme (beta MHC) was the only MHC detected in the soleus of control animals, type II MHC isoenzyme comprised 11.8 +/- 3.1% of the MHC in the heart failure group. Furthermore, steady-state mRNA levels encoding beta MHC were significantly depressed in the heart failure rats, where those encoding Types IIb and IIx MHC were increased. Steady-state mRNA levels of alpha-skeletal actin, cytochrome C oxidase (COX III) and succinate dehydrogenase (SDH) were also significantly depressed. This animal model of chronic heart failure is associated with quantitative and qualitative alterations in skeletal muscle gene expression that are similar to those reported in skeletal muscle of patients with chronic heart failure. The altered phenotype and impaired metabolic capacity may contribute to exercise intolerance in CHF.  相似文献   

2.
The effects of 14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044) on myosin heavy chain (MHC) isoform content of the rat soleus muscle and single muscle fibers were determined. On the basis of electrophoretic analyses, there was a de novo synthesis of type IIx MHC but no change in either type I or IIa MHC isoform proportions after either SF or HS compared with controls. The percentage of fibers containing only type I MHC decreased by 26 and 23%, and the percentage of fibers with multiple MHCs increased from 6% in controls to 32% in HS and 34% in SF rats. Type IIx MHC was always found in combination with another MHC or combination of MHCs; i.e., no fibers contained type IIx MHC exclusively. These data suggest that the expression of the normal complement of MHC isoforms in the adult rat soleus muscle is dependent, in part, on normal weight bearing and that the absence of weight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.  相似文献   

3.
OBJECTIVE: To study the mechanisms of limited exercise capacity and skeletal muscle energy production in male patients with congestive heart failure. DESIGN: Muscle biopsy study. PATIENTS: Skeletal muscle metabolic response to maximal bicycle exercise was studied in 10 patients with chronic congestive heart failure (ejection fraction 0.22 +/- 0.05; peak oxygen consumption, VO2 15.1 +/- 4.9 ml.min-1.kg-1) and in nine healthy subjects (peak VO2 33.5 +/- 6.7 ml.min-1.kg-1). Activities of skeletal muscle enzymes were measured from the vastus lateralis muscle of 48 patients (ejection fraction 0.24 +/- 0.06, peak VO2 17.4 +/- 5.4 ml.min-1.kg-1) and 36 healthy subjects (peak VO2 38.3 +/- 8.4 ml.min-1.kg-1). RESULTS: Although blood lactate levels were lower in patients than in healthy subjects (2.2 +/- 0.3 vs 5.2 +/- 0.6 mmol.l-1; P < 0.001) at peak exercise (96 +/- 11 W for patients and 273 +/- 14 W for controls), skeletal muscle lactate was similarly elevated (25.6 +/- 3.2 vs 22.7 +/- 2.7 mmol.kg-1) and creatine phosphate was equally depressed (P < 0.02) to low levels (7.0 +/- 1.9 vs 6.7 +/- 0.9 mmol.kg-1). The muscle ATP decreased by 21% (P < 0.05) and 8% (P < 0.01) in the patients and controls, respectively. Activities of rate limiting enzymes of the citric acid cycle (alpha-ketoglutarate dehydrogenase) and oxidation of free fatty acids (carnitine palmitoyltransferase II) were 48% and 21% lower than in controls, but the mean phosphofructokinase activity was unchanged in congestive heart failure. CONCLUSIONS: It seems that the main limiting factor of exercise performance during heavy exercise is the same in congestive heart failure and healthy subjects, a high rate of skeletal muscle lactate accumulation and high-energy phosphate depletion. In congestive heart failure, the low activity of aerobic enzymes is likely to impair energy production and lead to lactate acidosis at low workloads.  相似文献   

4.
Chronic heart failure (CHF) is accompanied by a reduced exercise capacity, and the symptoms can be at least in part explained by qualitative and quantitative changes in the skeletal muscle composition and metabolism. We have correlated the myosin heavy chain (MHC) composition of the gastrocnemius in 20 patients with different degrees of CHF to expiratory gases measured during maximal cardiopulmonary exercise testing, NYHA functional class and echocardiographic parameters. MHC composition was determined electrophoretically in skeletal muscle needle microbiopsies and the percent distribution calculated by laser densitometry. There was no correlation between ejection fraction, left ventricular end-diastolic and end-systolic diameters and MHC composition. The percentage of MHC 1 (slow aerobic isoform) was positively correlated with peak VO2 (r2 = 0.5, p = 0.0004), ventilatory threshold (VT, r2 = 0.33, p = 0.008), and O2 pulse (peak VO2/HR, r2 = 0.40, p = 0.003). There was a negative correlation between MHC 2a and 2b (fast isoforms) and peak VO2 (r2 = 0.38 and 0.37, p = 0.004, respectively), VT (r2 = 0.2, p = 0.05; r2 = 0.34, p = 0.007, respectively) and O2 pulse (r2 = 0.39, p = 0.003; r2 = 0.23, p = 0.03, respectively). NYHA functional class was also negatively correlated with the same parameters (r2 = 0.2, p = 0.01; r2 = 0.4, p = 0.001; r2 = 0.34, p = 0.006, respectively) as well as with MHC 1 (r2 = 0.62, p = 0.0001). A positive correlation was found between NYHA functional class and MHC 2a and 2b (r2 = 0.46, p = 0.001; r2 = 0.41, p = 0.002, respectively). The severity of heart failure is paralleled by a shift of the MHC pattern toward the fast MHC 2b. The correlation between the magnitude of the MHCs shift, from the slow aerobic to the fast type, with both clinical parameters (NYHA functional class) and functional measurements (peak VO2, VT, O2 pulse) of exercise capacity seem to suggest that changes in skeletal muscle composition may play a key role in exercise tolerance in patients with CHF.  相似文献   

5.
The effects of corticosteroid (CS) treatment (prednisolone continuously administered subcutaneously at a flow rate of 2.5 microl/h, daily dose 5.6 mg/kg, for 3 wk) on neuromuscular junction (NMJ) morphology and neuromuscular transmission in rat diaphragm muscle (Dimus) were compared with weight-matched (Sham) and ad libitum fed control (Ctl) groups. Fibers were classified on the basis of myosin heavy chain (MHC) isoform expression. CS treatment caused significant atrophy of fibers expressing MHC2X (type IIx), either alone or with MHC2B (type IIx/b). Fibers expressing MHCslow (type I) and MHC2A (type IIa) were unaffected by CS. The planar areas of nerve terminals and motor endplates at type IIx/b fibers were smaller in CS-treated Dimus compared with Sham and Ctl. However, CS-induced atrophy of type IIx/b fibers exceeded changes in NMJ morphology. Thus, when normalized for fiber diameter, NMJs were relatively larger in the CS-treated group compared with Ctl. Neuromuscular transmission failure, assessed in vitro by comparing force loss during repetitive (40 Hz) nerve vs. direct muscle stimulation, was less in CS-treated Dimus. These results indicate that alterations in NMJ morphology after CS treatment are dependent on fiber type and may contribute to improved neuromuscular transmission.  相似文献   

6.
The objective of this study was to determine the effects of age and exercise on the myosin heavy chain (MHC) composition of skeletal muscle. Young (3 mo) and old (22 mo) female specific pathogen-free barrier-reared Fischer 344 rats were randomly assigned to young untrained or young trained and old untrained or old trained groups, respectively. Young trained and old trained animals performed endurance exercise training on a motorized treadmill for 8 wk. Succinate dehydrogenase activity and MHC isoforms were measured in the plantaris (Plan), lateral and medial gastrocnemius (Gast), and soleus (Sol) muscles. In sedentary animals, aging resulted in a decrease (P < 0.05) in type IIb MHC and an increase (P < 0.05) in type IIa MHC in both the Gast and Plan muscles. Also, aging resulted in a small but significant increase (approximately 4%; P < 0.05) in type I MHC in the Sol. Exercise training resulted in significant (P < 0.05) increases in Gast, Plan, and Sol succinate dehydrogenase activity in both young and old animals. Furthermore, exercise training resulted in a decrease (P < 0.05) in the percentage of type IIb MHC and an increase (P < 0.05) in the percentage of type IIa MHC in the Plan in both young and old animals. These data suggest that there is an age-related shift in locomotor muscle MHC isoforms from a faster to a slower isoform.  相似文献   

7.
BACKGROUND: In congestive heart failure, fatigue-resistant, oxidative, slow type I fibers are decreased in leg skeletal muscle, contributing to exercise capacity (EC) limitation. The mechanisms by which ACE inhibitors and AII antagonists improve EC is still unclear. We tested the hypothesis that improvement in EC is related to changes in skeletal muscle composition toward type I fibers. METHODS AND RESULTS: Eight patients with congestive heart failure, NYHA classes I through IV, were treated for 6 months with enalapril (E) 20 mg/d, and another 8 with losartan (L) 50 mg/d. EC was assessed with maximal cardiopulmonary exercise testing at baseline and after treatment. Myosin heavy chain (MHC) composition of the gastrocnemius was studied after electrophoretic separation of slow MHC1, fast oxidative MHC2a, and fast glycolytic MHC2b isoforms from needle microbiopsies obtained at baseline and after 6 months. EC improved in both groups. Peak V(O2) increased from 21.0+/-4.7 to 27.6+/-4.3 mL . kg-1 . min -1 (P=0.011) in the L group and from 17.5+/-5.0 to 25.0+/-5.5 mL . kg-1 . min -1 (P=0.014) in the E group. Similarly, ventilatory threshold changed from 15.0+/-4.0 to 19.9+/-4.9 mL (P=0. 049) with L and from 12.0+/-1.9 to 15.4+/-3.5 mL (P=0.039) with E. MCH1 increased from 61.2+/-11.2% to 75.4+/-7.6% with L (P=0.012) and from 60.6+/-13.1% to 80.1+/-10.9% (P=0.006) with E. Similarly, MHC2a decreased from 21.20+/-9.5% to 12.9+/-4.4% (P=0.05) with L and from 19.9+/-7.8% to 11.8+/-7.9% (P=0.06) with E. MHC2b changed from 17. 5+/-6.5% to 11.7+/-5.2% (P=0.07) with L and from 19.5+/-6.4% to 8. 1+/-4.6% (P=0.0015) with E. There was a significant correlation between net changes in MHC1 and absolute changes in peak V(O2) (r2=0.29, P=0.029) and a trend to significance for MHC2a and 2b. CONCLUSIONS: Six months' treatment with L and with E produces an improvement in EC of similar magnitude. These changes are accompanied by a reshift of MHCs of leg skeletal muscle toward the slow, more fatigue-resistant isoforms. Magnitude of MHC1 changes correlates with the net peak V(O2) gain, which suggests that improved EC may be caused by favorable biochemical changes occurring in the skeletal muscle.  相似文献   

8.
This investigation compared how hindlimb unweighting (HU) affected the contractile function of single soleus muscle fibers from 12- and 30-mo-old Fischer 344 Brown Norway F1 Hybrid rats. After 1 wk of HU, functional properties of single permeabilized fibers were studied, and, subsequently, the fiber type was established by myosin heavy chain (MHC) analysis. After HU, the relative mass of soleus declined by 12 and 19% and the relative mass of the gastrocnemius declined by 15 and 13% in 12- and 30-mo-old animals, respectively. In 12-mo-old animals, the peak active force (5.0 +/- 0.2 x10(-4) vs. 3.8 +/- 0.2 x10(-4) N) and the peak specific tension (92 +/- 4 vs. 78 +/- 3 kN/m2) were significantly reduced in the MHC type I fibers by 24 and 15%, respectively. In 30-mo-old animals, the peak active force declined by 40% (4.7 +/- 0.2 x10(-4) vs. 2.8 +/- 0. 3 x10(-4) N) and the peak specific tension declined by 30% (79 +/- 5 vs. 55 +/- 4 kN/m2). The maximal unloaded shortening velocity of the MHC type I fibers increased in 12-mo-old animals (from 1.65 +/- 0.12 to 2.59 +/- 0.26 fiber lengths/s) and in 30-mo-old animals (from 0.90 +/- 0. 09 to 1.50 +/- 0.10 fiber lengths/s) after HU. Collectively, these data suggest that the effects of HU on single soleus skeletal muscle fiber function occur in both age groups; however, the single MHC type I fibers from the older animals show greater changes than do single MHC type I fibers from younger animals.  相似文献   

9.
This study examined the influence of spinal cord injury (SCI) on affected skeletal muscle. The right vastus lateralis muscle was biopsied in 12 patients as soon as they were clinically stable (average 6 wk after SCI), and 11 and 24 wk after injury. Samples were also taken from nine able-bodied controls at two time points 18 wk apart. Surface electrical stimulation (ES) was applied to the left quadriceps femoris muscle to assess fatigue at these same time intervals. Biopsies were analyzed for fiber type percent and cross-sectional area (CSA), fiber type-specific succinic dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPDH) activities, and myosin heavy chain percent. Controls showed no change in any variable over time. Patients showed 27-56% atrophy (P = 0.000) of type I, IIa, and IIax+IIx fibers from 6 to 24 wk after injury, resulting in fiber CSA approximately one-third that of controls. Their fiber type specific SDH and GPDH activities increased (P 相似文献   

10.
The aim of the present study was to determine the kinetics of recovery of muscle oxygenation (MO) from comparable levels of exercise in chronic heart failure (CHF) patients and normal subjects and to relate MO kinetics to the level of exercise intolerance. The rationale is based on the observation that the O2 debt is increased in patients with heart failure and repayment of the debt is relatively slow. Ten patients with stable CHF (mean age 47 +/- 10 years) and nine healthy control subjects (47 +/- 6 years) were studied. All patients had ischemic cardiomyopathy (ejection fraction 33 +/- 7%). On different days, all subjects performed an upright incremental cycle ergometer exercise test with gas-exchange analysis to determine peak VO2, and a 6-minute constant work-rate (CWR) protocol at 60% of peak VO2. Oxygenation of the vastus lateralis muscle was continuously monitored during exercise and recovery using near-infrared spectroscopy (NIRS). Both MO and VO2 responses to recovery were described by a monoexponential model with a time delay. The time constant and time delay were combined to calculate a mean response time (MRT). Recovery VO2 and MO MRTs for the incremental and constant work rate exercise test were longer in CHF patients than in control subjects (p < 0.05). Both VO2 and MO MRTs were inversely related to peak VO2 (r = -0.73 and -0.52, respectively; p < 0.05 for both). However, both kinetics were not significantly different within each group between the two exercise intensities. In conclusion, the greater the cardiac dysfunction, as assessed by peak VO2, the more the recovery of muscle and total body oxygenation from both maximal and submaximal exercise is delayed.  相似文献   

11.
We examined the novel interaction of hyperthyroidism and hindlimb suspension on the pattern of myosin heavy chain (MHC) expression (mRNA and protein) in skeletal muscles. Female Sprague-Dawley rats were assigned to four groups: 1) normal control (Con); 2) thyroid hormone treated [150 micrograms 3,5,3'-triiodothyronine (T3). kg-1. day-1] (T3); 3) hindlimb suspension (HS); or 4) T3-treated and HS (T3 + HS). Results show for the first time the novel observation that the combination T3 + HS induces a rapid and sustained, marked (80-90%) downregulation of type I MHC gene expression that is mirrored temporally by concomitant marked upregulation of type IIb MHC gene expression, as evidenced by the de novo synthesis of type IIb MHC protein in the soleus. The fast type IIx MHC isoform showed a differential response among the experimental groups, generally increasing with the separate and combined treatments in both the soleus and vastus intermedius muscles while decreasing in the plantaris muscles. The fast type IIa MHC was the least responsive to suspension of the MHCs and reflected its greatest responsiveness to T3 treatment while also undergoing differential adaptations in slow vs. fast muscle (increases vs. decreases, respectively). These results confirm previous findings that all four adult MHC genes are sensitive to T3 and suspension in a muscle-specific manner. In addition, we show that T3 + HS can interact synergistically to create novel adaptations in MHC expression that could not be observed when each factor was imposed separately.  相似文献   

12.
BACKGROUND: Patients with congestive heart failure (CHF) have a reduced exercise capacity because of the early appearance of fatigue and dyspnea. Qualitative changes in the skeletal muscle composition and metabolism can be responsible for the origin of symptoms METHODS: We correlated the myosin heavy chain (MHC) composition of the gastrocnemius in 20 patients with different degrees of CHF to NYHA class, diuretic consumption, echocardiographic parameters, and expiratory gases measured during cardiopulmonary exercise testing. MHC composition was determined electrophoretically in skeletal muscle needle microbiopsies and the percent distribution was calculated by densitometry. Maximal cardiopulmonary exercise testing was performed on a treadmill with a modified Naughton protocol. A capnograph was used. RESULTS: There was no correlation between ejection fraction, left ventricular end systolic diameter, left ventricular end diastolic diameter, and MHC composition. We found a significant positive correlation between the percentage of MHC 1 (slow aerobic isoform) and NYHA class (r2 = 0.62, p < 0.0001), peak VO2 (r2 = 0.5, p < 0.0004), ventilatory threshold (VT) (r2 = 0.33, p = 0.008) and O2 pulse (peak VO2/HR) (r2 = 0.40, p = 0.003). There was a negative correlation between both MHC2a (fast oxidative) and MHC2b (fast glycolytic) with peak VO2 (r2 = 0.38, p = 0.004 and r2 = 0.37, p = 0.004, respectively), VT (r2 = 0.2, p = 0.046 and r2 = 0.34, p = 0.007, respectively), and O2 pulse (peak VO2/HR) (r2 = 0.39, p = 0.003 and r2 = 0.23, p = 0.03). NYHA class was also correlated positively with MHC2a and MHC2b (r2 = 0.46, p = 0.001 and r2 = 0.41, p < 0.006, respectively) and negatively with the same clinical and functional parameters. CONCLUSIONS: The correlation between the magnitude of the MHC shift from the slow aerobic to the fast glycolytic and fast oxidative with both functional and objective measurements of exercise capacity (peak VO2, VT, O2 pulse) seem to suggest that changes in skeletal muscle composition may play a determining role in exercise tolerance in patients with CHF.  相似文献   

13.
14.
We examined the myosin heavy-chain (MHC), troponin T (TnT), and troponin I (TnI) isoform composition in the rat soleus muscle after 21 days of hindlimb suspension using electrophoretic and immunoblotting analysis with specific monoclonal antibodies. The suspended soleus showed a shift in the MHC isoform distribution with a marked increase (from 1.0 to 33%) in the relative amount of type IIa and IIx MHC and a corresponding decrease in type I MHC. However, type IIb MHC, which represents a major component in fast-twitch muscles, was not detected in suspended soleus muscles. TnT and TnI isoform composition was also changed with the appearance of fast-type TnI and TnT bands. However, a high-mobility TnT band, which represents a major component in fast-twitch muscles, was not expressed in suspended soleus. These isoform transitions may be related to the increased maximal velocity of shortening and higher calcium sensitivity previously reported in the rat soleus after hindlimb suspension.  相似文献   

15.
The expression of myosin heavy (MyHC) and light (MyLC) chain isoforms was analyzed after denervation and cross-reinnervation by a fast nerve of the slow-twitch Semimembranosus proprius (SMp) muscle, and after denervation and electrical stimulation at low frequency of the fast-twitch Semimembranous accessorius (SMa) muscle of the rabbit. The control SMp (100% type I fibers) expressed 100% type I MyHC and 100% slow-type (1S', 1S and 2S) MyLC isoforms. Five month denervation did not alter significantly the MyHC expression of the muscle, but induced the expression of a new type 1 MyLC corresponding most probably to an embryonic MyLC. Five-month cross-reinnervation of the SMp by the fast SMa nerve induced a large change of its fiber type properties. As shown by immunocytochemistry, almost all fibers were stained by fast myosin antibody, but a high proportion of them co-expressed slow myosin. This result was in agreement with biochemical data showing that fast MyHC and MyLC isoforms became predominant. The control SMa (nearly 100% type II fibers) expressed almost 100% type II MyHC (70% type IIb and 22% IIx/d) and 100% fast-type (1F, 2F and 3F) MyLC isoforms. Five month denervation of the SMa induced a shift in its MyHC, with 98% type IIx/d and 2% type IIb isoforms, and no change in the proportions of its MyLC. Three month electrical stimulation at 10 Hz of the SMa transformed its fiber type composition. All fibers reacted with the slow myosin antibody and a minor proportion of them were stained by the fast myosin antibody. These observations were in agreement with the biochemical analysis showing a large predominance of the slow-type MyHC and MyLC isoforms. Taken together, these results obtained from rabbit muscles which are normally homogeneous in either fast-twitch or slow-twitch fiber types, further support the idea that the different myosin isoforms, particularly the MyHC, are differentially regulated by motor innervation. Type I MyHC is maintained in denervated SMp muscle, but is not expressed in denervated SMa. Type IIb isoform is the most sensitive to neural influence, as it disappears rapidly in denervated and electrically stimulated fast-twitch SMa muscle, and is barely expressed in cross-reinnervated slow-twitch SMp muscle. In contrast, type IIa and type IIx/d are less dependent upon motor innervation. In addition to the previous studies of d'Albis et al. analysis of these results leads us to conclude that, in the rabbit, sensitivity to motor innervation increases from the glycolytic to the oxydative types of fibers, in the order IIB > IIX/IID > IIA > I.  相似文献   

16.
Chronic low-frequency stimulation was used to study the effects of enhanced contractile activity on satellite cell content and myosin isoform expression in extensor digitorum longus muscles from hypothyroid rats. As verified by immunohistochemical staining for desmin, vimentin, and myosin heavy chain (MHC) isoforms and by histological analysis, stimulation induced a transformation of existing fast fibers toward slower fibers without signs of fiber deterioration or regeneration. Immunohistochemically detected increases in MHC I and MHC IIa isoforms, as well as reduced numbers of fibers expressing the faster MHC isoforms, mirrored the rearrangement of the thick-filament composition. These changes, especially the upregulation of MHC IIa, were accompanied by an induction of developmental MHC isoforms in the transforming adult fibers. Satellite cell content rose 2.6-, 3.0-, and 3.7-fold over that of corresponding controls (P < 0.05 in all cases) in 5-, 10-, and 20-day-stimulated muscles, respectively. Hypothyroidism alone had no effect on satellite cell content but resulted in a significant reduction in fiber size. The relative satellite cell contents increased (P < 0.05) from 3.8% in euthyroid control muscles to 7.9, 11.5, and 13.8% in the 5-, 10-, and 20-day-stimulated hypothyroid muscles, respectively. In 20-day-stimulated muscles, the relative satellite cell content reached an almost twofold higher level than that of normal slow-twitch soleus muscle. This increase occurred concomitantly with a rise in myonuclear density, most probably because of the fusion of satellite cells with existing fibers.  相似文献   

17.
18.
In order to examine the relative impairment of the diaphragm and other skeletal muscles in systolic ventricular dysfunction (VD), their structure and function were compared between rats with VD induced by left coronary artery ligation (n = 17) and sham-operated rats (Co, n = 10). In addition, in an attempt to unravel the mechanism of the observed impairment, we examined alterations in insulin-like growth factor-I (IGF-I) serum levels and IGF-I expression in the liver, diaphragm, and gastrocnemius. In a second series of rats (VD, n = 5 and Co, n = 5) hemodynamic measurements were performed. All measurements were performed 3 mo after the operation. Infarct size averaged 32 +/- 10 and 44 +/- 20% in the two series, respectively (NS). Hemodynamic measurements revealed a decrease in left ventricular peak systolic pressure of 19% (p < 0. 05). Significant diaphragm atrophy (weight: 622 +/- 52 mg in VD versus 750 +/- 54 mg in Co, p < 0.0005), without alterations in diaphragm contractile properties was present in VD animals. For all animals combined, the reduction in diaphragm weight was related to infarct size (r = -0.74, p < 0.001). No alterations were observed in the other inspiratory and peripheral muscles. ATPase staining of the diaphragm showed atrophy of type I and type IIx/b fibers, their cross-sectional area (CSA) being reduced by 13 and 16%, respectively (p < 0.05). There were no signs of myopathic alterations. IGF-I expression was increased by 55% in the diaphragm of rats with VD (p < 0.05). IGF-I expression in the liver and gastrocnemius and serum IGF-I levels were unaltered. These data suggest the presence of compensatory mechanisms aimed at minimizing diaphragmatic fiber atrophy. We conclude that systolic VD caused: (1) selective diaphragm atrophy, which was related to infarct size; (2) a decrease in diaphragm type I and IIx/b CSA not associated with myopathic changes; (3) an increase in the IGF-I mRNA content of the diaphragm. The selective diaphragm involvement in the present study may be related to the moderate degree of ventricular dysfunction induced.  相似文献   

19.
OBJECTIVES: This study sought to define the relation between muscle function and bulk in chronic heart failure (HF) and to explore the association between muscle function and bulk and exercise capacity. BACKGROUND: Skeletal muscle abnormalities have been postulated as determinants of exercise capacity in chronic HF. Previously, muscle function in chronic HF has been evaluated in relatively small numbers of patients and with variable results, with little account being taken of the effects of muscle wasting. METHODS: One hundred male patients with chronic HF and 31 healthy male control subjects were studied. They were matched for age (59.0 +/- 1.0 vs. 58.7 +/- 1.7 years [mean +/- SEM]) and body mass index (26.6 +/- 0.4 vs. 26.3 +/- 0.7 kg/m2). We assessed maximal treadmill oxygen consumption (VO2), quadriceps maximal isometric strength, fatigue (20-min protocol, expressed in baseline maximal strength) and computed tomographic cross-sectional area (CSA) at midthigh. RESULTS: Peak VO2 was lower in patients (18.0 +/- 0.6 vs. 33.3 +/- 1.4 ml/min per kg, p < 0.0001), although both groups achieved a similar respiratory exchange ratio at peak exercise (1.15 +/- 0.01 vs. 1.19 +/- 0.03, p = 0.13). Quadriceps (582 vs. 652 cm2, p < 0.05) and total leg muscle CSA (1,153 vs. 1,304 cm2, p < 0.005) were lower in patients with chronic HF. Patients were weaker than control subjects (357 +/- 12 vs. 434 +/- 18 N, p < 0.005) and also exhibited greater fatigue at 20 min (79.1% vs. 92.1% of baseline value, p < 0.0001). After correcting strength for quadriceps CSA, significant differences persisted (5.9 +/- 0.2 vs. 7.0 +/- 0.3 N/cm2, p < 0.005), indicating reduced strength per unit muscle. In patients, but not control subjects, muscle CSA significantly correlated with peak absolute VO2 (R = 0.66, p < 0.0001) and is an independent predictor of peak absolute VO2. CONCLUSIONS: Patients with chronic HF have reduced quadriceps maximal isometric strength. This weakness occurs as a result of both quantitative and qualitative abnormalities of the muscle. With increasing exercise limitation there is increasing muscle weakness. This progressive weakness occurs predominantly as a result of loss of quadriceps bulk. In patients, this muscular atrophy becomes a major determinant of exercise capacity.  相似文献   

20.
The influence of microgravity on the myosin phenotype of skeletal muscle fibers in the vastus lateralis of eight crew members was studied before and after 5-day (n = 3) and 11-day (n = 5) spaceflights (space shuttle flights: STS-32, -33 and -34). Single-fiber electrophoresis analyses showed that the proportion of fibers expressing only slow (type I) myosin heavy chain (MHC) in the vastus lateralis was significantly lower after than before 11 days of spaceflight. Although the family of type II MHC isoforms was elevated post- compared with preflight, the distribution among the isoforms of type II MHC was not statistically different. Based on monoclonal and polyclonal antibodies specific for three adult MHC isoforms and single-fiber electrophoresis, approximately 3% of the fibers analyzed coexpressed all three adult MHC isoforms. The results from immunohistochemical staining with two different sets of antibodies indicate a reduction in the percentage of fibers expressing type I MHC as a result of spaceflight. The mean difference, however, was significant only when the fibers were categorized simply as type I or II. These changes appeared to be highly individualized among the astronauts. These results suggest that a rapid change in MHC isoform expression can occur in some muscle fibers after a relatively brief exposure to spaceflight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号