首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
土工格室处理高速公路拓宽结合部分析   总被引:8,自引:0,他引:8  
为了解土工格室处理高速公路拓宽结合部的效果,使加宽部分路堤和既有道路更为紧密地衔接形成整体,减少新老路堤的不均匀沉降,应用有限元分析土工格室铺于新老路基结合处不同层位时路基顶面各关键点的侧向位移、竖向沉降和最大差异沉降.结果表明,土工格室的铺设可以减少路基的侧向位移和差异沉降,且铺于基底和基顶时效果最好,可以提高路基整体刚度和地基承载能力.  相似文献   

2.
选择某9×20 m混凝土连续空心板梁为工程背景,研究连续空心板梁拓宽时新旧地基沉降差对结构受力的影响,利用有限元软件建立模型,分析了地基不均匀沉降对旧桥拓宽影响,分析结果表明:地基不均匀沉降对桥梁拓宽影响较大,应确定地基不均匀沉降的控制值。提出减少不均匀沉降的措施,为施工提供参考。  相似文献   

3.
采用简化模型对全短桩、全长桩及长短桩组合桩基础在竖向荷载作用下的变形特性进行三维有限元分析.分析结果表明长短桩组合桩基础不仅可以大量减少长桩用量,而且可有效地控制基础整体沉降和差异沉降.  相似文献   

4.
为了明确复合地基上加筋土挡墙力学行为,利用非线性分析软件ADINA建立有限元模型,建立了复合地基上的加筋土挡墙力学响应分析模型,将路面荷载与行车荷载共同等效为均布荷载。分析结果表明:复合地基上加筋土挡墙在施工期间的沉降量存在一个临界值,当填筑至某一层位后总沉降量显著下降;每一层加筋土层都会发生不均匀沉降,最上面一层最明显;水平变形最大值发生在面板中下部,随着时间的推移,墙体的变形越来越稳定,稳定后其水平变形形成鼓肚形状。对影响复合地基上加筋土挡墙竖向变形的参数如加筋间距、填土性质、地基刚度等进行了分析。结果表明,在格栅选择、面板设计、地基刚度控制、垫层模量及厚度设计等方面的合理设计可以有效减少挡墙竖向变形;同时还能减少路面的不均匀沉降。该研究对复合地基上加筋土挡墙设计与施工具有重要指导意义。  相似文献   

5.
分析了冲击压实技术原理、优势以及冲击压实技术特点和施工步骤。通过工程试验,重点分析了路基冲击压实技术在施工中的重要作用。利用冲击压实技术处理路基,可以进一步保证路基填土压实度指标的控制,减少路基工后沉降。冲击压实施工效率高、压实速度快,影响深度大,可填土厚度大,施工速度快。  相似文献   

6.
结合结构最优化设计概念和有限元分析,建立了嵌岩桩优化数值模型,提出了嵌岩桩目标优化设计的方法.与传统设计相比,通过对嵌岩桩进行桩径和嵌岩深度优化设计可满足桩沉降和承载力的双控要求,使桩端阻力、桩侧阻力能最大限度地得到发挥,有效减少工程投资.以ABAQUS有限元软件为平台,可以成为解决嵌岩桩实际工程问题的个性化工具和仿真研究环境.利用它可以模拟嵌岩桩成桩基本过程,分析嵌岩桩荷载—沉降特性,并对嵌岩桩进行了优化设计.  相似文献   

7.
依据三个不同行业工程的现场实测数据,利用常用的几类沉降预测模型与最近几年学者提出沉降预测新方法,提出在沉降预测中适用性较强的扩展的朗格缪尔模型。经对比分析验证,该模型具有精度高、可靠性高、适用性强的特点,可以推广使用。  相似文献   

8.
以合肥地铁1号线某区间隧道为工程背景,利用有限差分软件 FLAC3D建立盾构掘进施工过程三维数值模型,分析不同掘进距离条件下地表沉降及围岩变形规律,确定了盾构掘进引起的地表沉降范围,并提出相应施工建议。结果表明:地表纵向沉降范围随着开挖面的推进而不断加大,其开挖面前方有效影响范围约为洞径的3倍;地表横向沉降变化规律和Peck沉降曲线的变化大体相同,采用Peck沉降曲线能较好的预测横向沉降范围;注意控制注浆量,从而减少围岩的变形。  相似文献   

9.

为了改进传统基于双控指标建筑沉降监测分析思路存在的不足,引入统计过程控制技术对其优化,提出一种新的分析方法. 该方法分别利用$\\bar{X}-R $统计控制图识别沉降变化是否稳定受控,R统计控制图识别差异沉降变化,$ \\bar X$统计控制图识别总体沉降变化,并利用过程能力指数判断相对于阈值沉降控制能力是否满足要求,据此明确工程措施. 结合北京地铁8号线盾构施工邻近古建筑工程项目,验证该方法的合理性. 结果表明:引入统计过程控制(statistical process control, SPC)技术,可科学分析沉降演化过程的动态随机性; 该分析方法不仅可以提出合理的工程措施,而且可以科学验证已执行措施的有效性.

  相似文献   

10.
基于桩体在地基处理中的有效工作长度对长短桩的工作机理进行了分析.采用不同的桩长,在其上设置褥垫层,能合理利用桩的有效工作长度,充分发挥桩间土的积极作用.结合工程实例阐述了长短桩复合地基的应用.长短桩的联合应用可以有效地提高地基强度,减少沉降,加快施工进度,降低工程造价.  相似文献   

11.
采用非线性有限元方法,通过比较土工格栅加筋路堤和未加筋路堤来分析加筋对软基位移场的影响.计算结果表明:土工格栅能较大地减小软基路堤的侧向位移、减小不均匀沉降和堤外隆起,在一定程度上减小路堤的最大沉降.研究结果对软基上路堤加筋处理有借鉴意义.  相似文献   

12.
桥头部基路堤施工关系到桥台与台背路堤间是否出现跳车现象的问题.从桥头软基路堤设计和施工的角度出发,提出桥台软基处治的施工研究,台背路堤料的选择,台背路堤填料的排水和施工方法,土工布摊铺方法,软基路堤沉陷观测和施工质量控制措施等软基路堤设计和施工必须注意的问题,对寻求解决桥头出现跳车现象具有指导作用.  相似文献   

13.
针对高等级公路路桥过渡段易出现桥头跳车病害的现状,结合河南省济焦新高速公路工程实体,采用4种不同的搭板和填筑方式分析它们对减少路桥过渡段桥头跳车的效果。应用快速拉格朗日有限差分计算程序FLAC软件,对桥台台背路堤填土变形及力学特性进行数值模拟分析。结果表明:不同的搭板方式和填筑材料均影响桥台台背处路堤差异沉降大小和沉降速率;在4种搭板方式中,二次搭板 填筑砾石方式对降低台背路堤差异沉降的效果最好。  相似文献   

14.
包裹碎石桩是将碎石桩包裹在土工合成材料中,通过土工合成材料的径向约束作用,减少碎石桩的变形,提高其在软土地基中的稳定性。使用有限差分程序FLAC3D进行模拟,研究地震荷载作用下软土地基中包裹碎石桩的动力响应。数值模型采用考虑滞回特性的非线性弹塑性模型模拟碎石桩和软土,使用线弹性土工格栅单元模拟土工合成材料。利用振动台试验结果验证三维动力数值模型,然后开展参数分析,研究筋材刚度、软土剪切模量、路堤荷载等参数对软土地基中包裹碎石桩地震动力响应的影响规律。数值模拟结果表明:随着筋材刚度的增加、软土剪切模量的增加、竖向荷载的减小,碎石桩的沉降及筋材应变和土体的剪应变也显著减小,土工合成材料包裹筋材可以有效提高碎石桩的抗震性能。  相似文献   

15.
A three-dimensional dynamic finite element model of track-ballast-embankment and piled raft foundation system is established. Dynamic response of a railway embankment to a high-speed train is simulated for two cases: soft ground improved by piled raft foundation, and untreated soft ground. The obtained results are compared both in time domain and frequency domain to evaluate the effectiveness of the ground improvement in mitigating the embankment vibrations induced by high-speed trains. The results show that ground improving methods can significantly reduce the embankment vibrations at all considered train speeds(36-432 km/h). The ground response to a moving load is dictated largely by the relationship between load speed and characteristic value of wave velocities of the ground medium. At low speeds, the ground response from a moving load is essentially quasi-static. That is, the displacements fields are essential the static fields under the load simply moving with it. For the soft ground, the displacement on the ballast surface is large at all observed train speeds. For the model case where the ground is improved by piled raft foundation, the peak displacement is reduced at all considered train speeds compared with the case without ground improvement. Based on the effect of energy-dissipating of ballast-embankment-ground system with damping, the train-induced vibration waves moving in ballast and embankment are trapped and dissipated, and thus the vibration amplitudes of dynamic displacement outside the embankment are significantly reduced. But for the vibration amplitude of dynamic velocity, the vibration waves in embankment are absorbed or reflected back, and the velocity amplitudes at the ballast and embankment surface are enhanced. For the change of the vibration character of embankment and ballast, the bearing capacity and dynamic character are improved. Therefore, both of the static and dynamic displacements are reduced by ground improvement; the dynamic velocity of ballast and embankment increases with the increase of train speed and its vibration noise is another issue of concern that should be carefully evaluated because it is associated with the running safety and comfort of high-speed trains.  相似文献   

16.
介绍了软土地基上路堤稳定分析的基本理论,分析了软土地基变形的一般规律,对软土地基上路堤的设计与施工具有一定的参考价值。  相似文献   

17.
A two-dimensional (2-D) finite element (FE) model was developed to analyze the deformation and stress of embankment on soft ground due to widening with different treatment techniques. It is found that the embankment widening induces transverse gradient change due to differential settlements and horizontal outward movements at the shoulder of the existing embankment. Embankment widening also increases the shear stress along the slope of the existing embankment, especially at the foot of slope. The failure potential due to embankment widening may increase with the increase of widening width when the widening width is smaller than 8.5 m, but may decrease with the increase of widening width as the widening width is greater than 8.5 m. The effectiveness of four ground and embankment treatment techniques, including geosynthetic reinforcement, light-weight embankment, deep mixed columns, and separating wall were compared. The results indicate that these treatments reduce the differential settlements and improve the stability. The light-weight embankment has the most effectiveness among four treatments. By using the fly-ash backfill material in widening, the transverse gradient change decreases from 0.5%–1.3% to 0.26%–0.8% and the maximum horizontal displacement decreases from 2.76 cm to 1.44 cm.  相似文献   

18.
为了控制在循环荷载作用下软基路堤的总沉降和工后沉降,采用能够综合考虑主、次固结沉降的Yin-Graham一维等效时间线模型和一维条件下软土“最终”沉降与应力路径无关的性质,获得在正弦循环荷载作用下路堤运行期间长期总沉降和工后沉降近似计算公式,建立路堤总沉降和工后沉降与回弹指数、压缩指数、蠕变系数、初始有效应力、路堤承受的静荷载幅值和动荷载幅值之间的关系,除上述影响因素外,工后沉降还与运行期开始时路堤下软基的总有效应力有关.利用沉降公式计算具体工程软基路堤运行期结束时的长期总沉降量,计算误差小于0.275%.  相似文献   

19.
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.  相似文献   

20.
通过运用ANSYS有限元分析软件,对软土路基土工格栅加筋的作用机理进行了数值模拟,研究了土工格栅加筋对软土地基应力场和位移场分布的影响.从计算结果分析可知,土工格栅堤底加筋对约束浅部地基土水平位移有显著作用,使最大水平位移点移向地基深处,使堤趾水平位移大幅减小,同时,对竖向沉降有一定的均衡作用,加筋增强了路堤的整体性和稳定性,对地基承载力的提高也有一定作用.特别是加筋前后地表最大水平位移点的移位,对路堤填筑施工监测有一定借鉴意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号