首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高密度储氢材料研究进展   总被引:2,自引:0,他引:2  
氢是一种清洁的燃料,氢能是未来有发展前景的新型能源之一.氢的储存是氢能现阶段开发和利用的瓶颈.氢的储存方法有高压气态储存、低温液态储存和固态储存等3种,其中高压气态储存或低温液态储存不能满足将来的储氢目标.固态储氢是通过化学或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氢气储存方式.高密度储氢材料由轻元素构成,包括铝氢化物、硼氢化物、氨基氢化物、氨硼烷等,理论储氢质量分数均达到5%以上.综述了高密度储氢材料的研究进展,认为高储氢容量、近室温操作、可控吸/放氢、长寿命的轻质氢化物材料有希望达到燃料电池和移动氢源应用的目标.  相似文献   

2.
《低温与特气》2012,(3):53-53
申请(专利)号:201110119200.5公开(公告)日:2011—10—19申请(专利权)人:浙江大学摘要:本发明涉及新型储氢材料领域,公开了一种铌基配位硼氢化物复合储氢材料及制备方法,该储氢材料主要用于燃料电池供氢源、氢能源汽车等领域。该复合储氢材料的基体材料—铌基配位硼氢化物的化学式为Nb(BH4)5,其单位质量储氢密度为12wt%。复合储氢材料制备方法如下:在室温和惰性气体保护气氛下,将硼氢化锂和卤化铌原料按照5:1的摩尔比在玛瑙研钵中进行研磨,  相似文献   

3.
高容量储氢材料的研究进展   总被引:6,自引:0,他引:6  
氢能是一种理想的二次能源.氢能开发和利用需要解决氢的制取、储存和利用3个问题,而氢的规模储运是现阶段氢能应用的瓶颈.氢的储存方法有高压气态储存、低温液态储存和固态储存等3种.固态储氢材料储氢是通过化学反应或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氖气储存方式.由轻元素构成的轻质高容量储氢材料,如硼氢化物、铝氢化物、氨摹氢化物等,理论储氢容量均达到5%(质量分数)以上,这为固态储氢材料与技术的突破带来了希望.新型储氢材料未来研究的重点将集中于高储氢容量、近室温操作、可控吸/放氢、长寿命的轻金属基氢化物材料与体系.  相似文献   

4.
多孔材料的储氢性能研究是氢能经济发展的重要课题之一,然而其室温下的储氢性能还不能满足氢存储系统的所有要求。氢溢流被证明是提高多孔材料在室温下储氢性能的有效方法。主要从氢溢流产生的方法及其优缺点,氢溢流在碳基纳米材料、沸石、金属有机骨架和共价有机骨架等多孔材料储氢性能研究中的最新动态进行了详细综述,并指出了当前存在的问题和今后的发展方向。  相似文献   

5.
氢气作为一种清洁能源,被认为是化石能源最理想的替代者。安全、高效且稳定的储氢材料的开发是当前氢能源应用研究中面临的最大挑战之一。氨硼烷(NH3BH3,AB)因其较高的储氢密度(146 g·L-1,质量分数为19.6%)、安全无毒及高化学稳定性等特性成为一种重要的化学固态储氢材料。氨硼烷水解制氢反应条件温和,但需要在合适的催化剂存在的条件下进行。通过调节催化剂的活性组分、颗粒尺寸、活性组分的分散度、电子结构等,可显著提高氨硼烷水解产氢速率。综述了近年来氨硼烷水解制氢反应中镍基催化剂的研究进展,重点概述了镍单质、镍化合物以及镍合金催化剂在氨硼烷水解产氢中的应用,阐述了氨硼烷水解产氢反应机理,展望了氨硼烷水解产氢的发展趋势以及面临的挑战。  相似文献   

6.
氢能因来源广、无污染、热值高等特点成为解决能源问题的重要方案。随着燃料电池技术的发展,氢能在车载方面的应用得到进一步拓宽,但氢气的加注、存储问题成为限制氢能汽车发展的瓶颈之一。实现氢气安全高效的存储是氢能规模化应用的关键。目前主要的储氢方式有高压气态、低温液态、固态。通过增加氢气压力和提高容器材料的比强度,可有效提高气态储氢系统的质量储氢密度,但由于气体分子间作用力的影响,高压气态储氢的体积储氢密度较低。同时过高的氢压对安全储氢罐的设计和成本也是一大挑战。通过加压、降温液化氢气实现的液态储氢拥有理想的质量储氢密度和体积储氢密度,但保存液态氢对设备要求十分苛刻,且液化氢气所需能耗为氢燃烧热值的40%,得不偿失。固态储氢方式将氢以原子、离子的形式存储于氢化物中,因此固态储氢材料的体积储氢密度可观,且材料吸/放氢条件温和,安全性高,但固态储氢材料的质量储氢密度不占优势。高压复合储氢罐将高压储氢技术与固态储氢材料相结合,同时拥有气态储氢与固态储氢的优势,是实现安全高密度储氢的有效途径。通过气-固复合的储氢方式,可有效提升高压储氢罐的体积储氢密度,减小储氢罐体积,降低充氢压力,提高安全性。而发展在高压条件下具有良好充/放氢特性的储氢材料是提升高压复合储氢罐性能的关键。TiCr2基、ZrFe2基AB2型合金是主要的高压储氢合金,对它们的研究集中在通过利用不同原子半径、电子结构的合金元素进行A侧和/或B侧元素替代,实现对合金平台压、容量、吸放氢动力学性能的有效调控。但TiCr2基、ZrFe2基储氢合金的质量储氢密度仍然偏低,相比之下,NaAlH4与AlH3具有高的储氢密度,是潜在的高压储氢材料。通过纳米化、掺杂催化剂等手段能够有效降低NaAlH4的脱氢温度,提高其循环稳定性;通过球磨、改善溶剂等方法可提升AlH3的合成产率、改善其结晶性。本文简要介绍了高压复合储氢罐的原理及对高压储氢材料的主要性能要求,着重评述了间隙型储氢合金(TiCr2、ZrFe2)、铝基金属氢化物(NaAlH4、AlH3)两类高压储氢材料的结构、性能特点及研究进展。  相似文献   

7.
储氢材料研究进展   总被引:2,自引:0,他引:2  
氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属(合金)储氢、碳基储氢、有机液体储氢、络合物储氢、硼烷氨储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。  相似文献   

8.
镁基储氢材料表面能及热力学性能研究   总被引:1,自引:0,他引:1  
于振兴  王尔德  张文丛  房文斌  梁吉 《功能材料》2004,35(Z1):1908-1911
研究了镁基储氢材料粉末的表面热力学问题,从化学平衡的角度探讨了镁基储氢材料的吸放氢的平衡压问题,及镁基储氢材料颗粒的表面状态对材料吸放氢平衡压的影响,建立了包含镁基储氢材料的表面自由能的热力学方程,并从理论上计算出了不同温度下镁基储氢材料的平衡压力.探讨了表面自由能对吸放氢平衡压的影响,分析了储氢材料的比表面积,即材料的颗粒直径与材料吸放氢平衡压的关系.  相似文献   

9.
专利技术     
《低温与特气》2010,(6):48-48
摘要:本发明涉及储氢材料领域,尤其涉及一种固-液硼氢化物复合储氢材料及其制备方法。一种固-液硼氢化物复合储氢材料,其是由碱金属硼氢化物固体储氢材料与铝基硼氢化物液体储氢材料复合组成。该固体储氢材料与该液体储氢材料的摩尔比为2:8—8:2。  相似文献   

10.
钒基固溶体储氢合金具有高的储氢密度,并且室温下可以吸放氢,具有良好的动力学性能,因此被认为是最有潜力的车载储氢材料之一.介绍了金属钒吸放氢特性,概述了钒基储氢合金的研究进展,就近年来改善钒基储氢合金性能的方法进行了总结,并对钒基储氢合金的稳定性及应用成本等问题进行了探讨.最后,对铳基储氢合金亟待解决的问题及发展方向进行了展望.  相似文献   

11.
氢能的有效开发和应用主要需解决氢的安全、高效储运瓶颈问题。MgH_2具有高储氢容量、资源丰富以及成本低廉等优点,被认为是最具发展前途的一类储氢材料。但是,MgH_2较高吸放氢温度和较慢吸放氢速率限制了其实际应用。核壳结构纳米镁基储氢材料有助于材料储氢性能的改善,目前已取得了大量成果。本文针对国内外纳米镁基核壳结构储氢体系研究现状,归纳了该类储氢材料的制备方法,重点阐述和总结了其吸放氢热力学动力学性能、微观结构、物相变化,并对该领域的研究成果和方向进行了总结和展望,指出调控核壳结构镁基材料的纳米尺寸、添加高效纳米催化剂及其综合协同作用是镁基储氢材料领域未来的研究趋势和重要研究方向。  相似文献   

12.
中科院物理所/北京凝聚态物理国家实验室博士生杨身园与导师王恩哥及美国橡树岭国家实验室的张振宇等人合作,发现了一种可能的新储氢材料:C60+Ca。在过去10年间,碳基纳米材料是一种备受关注的潜在储氢材料。但是,氢分子在碳材料表面的物理吸附太弱,不满足常温常压的实际应用要求。为了提高氢分子在碳材料表面的吸附能,人们提出了多种方法修饰碳材料。  相似文献   

13.
综述了氢存储研究的重要性和国内外当前金属储氢材料的研究状况,对稀土系、Laves相系、镁系和钛系4大系列及金属配位氢化物系储氢材料当前的研究热点和存在问题进行了详细的介绍,并对未来金属储氢材料的研究工作进行了展望.金属储氢材料可用于电能、机械能、热能和化学能的转换和储存,具有广阔的应用前景.然而到目前为止,那些在室温下容易释放氢的金属氢化物,其可逆吸氢量不超过2%,无法满足实际要求.因此,新型储氢材料的开发任重而道远.  相似文献   

14.
氢由于具有高效率和高功率密度而被认为是一种出色的清洁能源。化学储氢材料要求具有高的氢储存量。氨硼烷具有高氢含量(19.6%),且在普通贮存条件下稳定,被认为是有吸引力的储氢材料之一。由于氨硼烷在常温下不易放氢,故放氢催化剂成为氨硼烷放氢研究的核心技术和主要方向。金属催化剂可以显著提高水解放氢速度,是影响氨硼烷水解放氢的关键因素,但是金属颗粒催化剂一般都存在颗粒粒径生长过快、易团聚等缺点。为了解决这一问题,研究者选择不同的载体来分散催化剂,使催化剂金属分散在载体表面,防止团聚和过快增长,从而暴露更多活性位点,使催化氨硼烷放氢速率更快。文章将针对不同催化剂载体对氨硼烷水解的催化效果进行阐述。  相似文献   

15.
运用由壳层-缩核模型推导出的镁基储氢材料吸氢过程的动力学方程,分析了储氢材料在吸氢过程中的传质与传热规律,并对小型储氢器传质与传热过程进行了计算,其计算结果与试验数据可以较好地吻合,特别是对镁基储氢材料在吸氢过程所形成的‘引燃'过程进行了准确的描述,为储氢器设计提供了必要的理论基础.  相似文献   

16.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤、经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPaH2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式,得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/molH2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

17.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤,经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPa H2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/mol H2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

18.
<正>近日,上海交通大学材料科学与工程学院氢科学中心的邹建新教授课题组与邓涛团队的邬剑波特别研究员课题组合作在镁基储氢材料领域取得重要研究进展。该工作以Mg基储氢材料为对象,研究了Pt纳米催化剂包覆对Mg储氢性能的影响,通过原位TEM观察MgH2放氢过程,结合DFT理论计算,深入研究了过渡金属纳米催化  相似文献   

19.
储氢技术及其关键材料研究进展   总被引:1,自引:1,他引:1  
氢能是未来能源结构中最具发展潜力的能源载体,氢的廉价制备、安全高效储送以及大规模应用是当今研究的重点,而氢能的储存是其中的关键性问题.本文综述了目前主要的储氢技术和储氢材料,如高压气态储氢、低温液态储氢、合金储氢、有机液体氢化物储氢、碳质材料储氢和金属有机骨架类聚合物储氢等,并对未来的研究方向进行了展望.  相似文献   

20.
《新材料产业》2007,(12):81-81
11月12日,美国弗吉尼亚大学的研究人员在该州召开的国际氢经济材料论坛上宣布,他们开发出了可大幅提高氢储存能力的新材料,其储氢量最大可达到自身质量的14%,相当于目前储氢合金材料的2倍,同时,该技术采用在室温下储存氢的方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号