首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast-like cells in the periacinar region may play an important role in periacinar fibrosis. In the present study, we isolated and cultured periacinar fibroblast-like cells (PFCs) derived from human pancreatic acini and examined the characteristics of human PFCs morphologically and immunocytochemically. Immunocytochemical study of human PFCs showed that they were positively stained with antibodies against type I collagen/procollagen, type III collagen/procollagen, fibronectin, prolyl hydroxylase beta sub-unit, type IV collagen, laminin, alpha-smooth muscle actin, vimentin, and nonmuscle myosin. Electron microscopic study showed that human PFCs contained a number of microfilaments, forming dense bodies in the cytoplasm. These results indicated that human PFCs possess characteristics of myofibroblasts. Expression of alpha-smooth muscle actin, a marker of the myofibroblast-like phenotype, was increased with time in culture and was enhanced by treatment with transforming growth factor (TGF)-beta 1. Collagen synthesis in human PFCs was stimulated by TGF-beta 1 and the proliferation of human PFCs was stimulated by platelet-derived growth factor. These findings suggest that PFCs from human pancreas seem to be involved in periacinar fibrosis.  相似文献   

2.
Rat pancreatic periacinar fibroblastoid cells (PFCs) appear to be involved in intralobular fibrosis and acinar cell regeneration. We isolated pancreatic acini of the rat, cultured the fibroblastoid cells, and characterized the cells morphologically and immunohistochemically. Isolated acini were seeded on culture dishes, and spindle-shaped cells migrated and proliferated. On Electronmicroscopic examination, microfilament bundles were seen, and the intracellular localization of vimentin, alpha-smooth muscle actin, and non-muscle myosin was identified immunohistochemically. These findings strongly suggest that the cells were myofibroblast-like. The PFCs were also demonstrated, immunohistochemically, to contain prolyl hydroxylase, type-I procollagen, type-III procollagen, type-IV collagen, fibronectin, and laminin. Stimulation by transforming growth factor beta 1 (TGF beta 1) increased intracellular immunoreactive prolyl hydroxylase and collagen synthesis in the PFCs. These findings indicate that PFCs proliferate in culture as myofibroblast-like cells and synthesize extracellular matrix components. It is possible that PFCs are involved in intralobular fibrosis in response to stimulation with TGF beta 1.  相似文献   

3.
PURPOSE: Several lines of evidence suggest that the infiltration of macrophages and the expression of alpha-smooth muscle actin in myofibroblasts play important roles in the pathogenesis of tubulointerstitial fibrosis. However, the temporal sequence of these pathological changes or the dynamics in the expression of this cytoskeletal molecule in the process of tubulointerstitial fibrosis have not been precisely documented. MATERIALS AND METHODS: We investigated the infiltration of macrophages and the expression of alpha-smooth muscle actin in interstitial fibrosis caused by a unilateral ureteral obstruction (UUO) experimental model. RESULTS: The result showed that the macrophages were immobilized at the interstitium and alpha-smooth muscle actin was up-regulated in myofibroblasts of both cortex and medulla at day 3 when interstitial volume start to increase significantly. The highest expression of alpha-smooth muscle actin was detected at day 5 and the most intense infiltration of macrophages was noted at day 14 while the interstitial volume in renal cortex and medulla continued to increase until day 28. Furthermore, we investigated the effect of mizoribine, an immunosuppressive agent, on the interstitial fibrosis induced by UUO, demonstrating that mizoribine, but not prednisolone, significantly improves the tubulointerstitial fibrosis by suppressing the macrophage infiltration and the expression of alpha-smooth muscle actin. CONCLUSIONS: We discuss the pathological roles of macrophages and alpha-smooth muscle actin in tubulointerstitial fibrosis induced by UUO treatment. We also emphasize the pharmacological basis and clinical relevance of mizoribine in the treatment of interstitial fibrosis caused by obstructive nephropathy.  相似文献   

4.
5.
PURPOSE: Anterior subcapsular cataracts are characterized by the appearance of opaque plaques of abnormal cells. Distinctive spindle-shaped cells containing alpha-smooth muscle actin are present and are associated with wrinkling of the overlying lens capsule. Accumulations of extracellular matrix, including type I collagen, also are found. The authors previously reported that transforming growth factor-beta (TGF-beta) induces similar aberrant morphologic changes in lens epithelial explants. More recently, they identified alpha-smooth muscle actin in explants cultured with TGF-beta. The aim of this study was to determine whether TGF-beta induces comparable cataractous changes in whole lenses and to examine the effects of this treatment on the transparency of the lens. METHODS: Whole lenses from 21-day-old rats were cultured in defined serum-free medium with TGF-beta 2 or without added growth factors for 5 days. Lenses were then photographed and prepared for histology and immunolocalization. RESULTS: Lenses cultured with TGF-beta developed distinct anterior opacities just beneath the lens capsule. Histologically, clumps of abnormal cells corresponded with these opacities. Spindle-shaped cells, which contained alpha-smooth muscle actin, were present, and the overlying capsule was often wrinkled. The clumps contained accumulations of type I collagen, laminin, and heparan sulphate proteoglycan. In contrast, lenses cultured without growth factors remained transparent, retained normal lens morphology, and did not accumulate alpha-smooth muscle actin or type I collagen. CONCLUSIONS: These results show that TGF-beta induces whole lenses to form opacities that contain morphologic and biochemical markers for subcapsular cataract.  相似文献   

6.
Platelet-derived growth factor (PDGF) B is a mitogen and chemoattractant for smooth muscle cells in vitro, and expression of a recombinant PDGF B gene in porcine arteries stimulates intimal thickening. To define the mechanisms by which PDGF B gene expression induces intimal thickening in vivo, we examined its effects on smooth muscle cell proliferation and migration, extracellular matrix synthesis, and inflammatory cell infiltration in intimal lesions of pig arteries after direct gene transfer of a recombinant PDGF B gene. PDGF B gene expression was associated with rapid formation of an intima, including 3- to 10-fold increases in intimal thickness and intima-to-media area ratio 4 to 21 days after gene transfer compared with control transfected arteries. Intimal smooth muscle cell proliferation was detected at 2 days, peaked at 7 days (P < .01), and declined by 14 days, although the total number of intimal nuclei progressively increased to 21 days (P < .01). Calculations of expected-to-observed ratios of intimal cells, based on BrdC proliferation indexes, demonstrated that the increases in intimal cell number on days 2 through 7 could not be accounted for by proliferation alone, suggesting that recombinant PDGF BB acts to stimulate cell proliferation and migration of smooth muscle cells into the intima. Extracellular matrix deposition and procollagen synthesis were observed after 7 days (P < .01) and were associated with a decline in cell density in the intima, suggesting that extracellular matrix synthesis may contribute to progressive intimal thickening in response to PDGF B gene expression. There was minimal accumulation of inflammatory cells, including macrophages and CD3(+) lymphocytes, in transfected arteries. These data suggest that PDGF B gene expression promotes intimal expansion by both proliferation and migration of smooth muscle cells followed by synthesis of extracellular matrix and therefore acts through several mechanisms to play a role in the pathogenesis of intimal lesions in vivo.  相似文献   

7.
We investigated the effect of transforming growth factor-beta1 (TGF-beta1) on the expression of calponin-h1, alpha-smooth muscle actin (alpha-SMA), and extracellular matrix (ECM) components in a cultured human Ito cell line, LI90. The TGF-beta1 treatment stimulated productions of hyaluronic acid and laminin, and significantly decreased the secretion of hepatocyte growth factor in LI90 cells. The functional characteristics of LI90 cells were compatible with those of human-activated Ito cells that are known as pericyte-like mesenchymal liver cells. TGF-beta1 induced a slight growth-inhibition of LI90 cells. TGF-beta1 enhanced the expressions of both alpha-SMA and calponin-h1 at the protein level, while tumor necrosis factor-alpha and interleukin-1alpha did not affect the expressions of these cytoskeletal proteins on LI90 cells. The addition of TGF-beta1 to LI90 cells resulted in a significant increase of calponin-h1 mRNA levels, but not calponin-h2. These data suggest that the expression of calponin-h1 is controlled at the level of mRNA under the coordinate regulation together with alpha-SMA as the process of perpetuation of activated Ito cells promoted by TGF-beta1. The identification of smooth muscle features promoted by TGF-beta1 support the hypothesis that the activation of Ito cells coincides with their contractile behavior, indicating that these cells may be important in vasoregulation during liver injury and fibrosis.  相似文献   

8.
Platelet-derived growth factor (PDGF) exists as a dimer composed of two homologous but distinct peptides termed PDGF-A and -B chains, and may exist as AA, AB, and BB isoforms. The PDGF-B chain has been implicated as a mediator of renal vascular rejection by virtue of up-regulated expression of its receptor, PDGF beta-receptor, in affected arteries. A role for PDGF-A chain in mediating intimal proliferation has been suggested in human atherosclerosis (Rekhter MD, Gordon D: Does platelet-derived growth factor-A chain stimulate proliferation of arterial mesenchymal cells in human atherosclerotic plaques? Circ Res 1994, 75:410), but no studies of this molecule in human renal allograft injury have been reported to date. We used two polyclonal antisera to detect expression of PDGF-A chain and one monoclonal antibody to detect PDGF-B chain by immunohistochemistry in fixed, paraffin-embedded tissue from 1) normal adult kidneys, 2) a series of renal transplant biopsies chosen to emphasize features of vascular rejection, and 3) allograft nephrectomies. Immunohistochemistry was correlated with in situ hybridization on adjacent, formalin fixed tissue sections from nephrectomies utilizing riboprobes made from PDGF-A and -B chain cDNA. PDGF-A chain is widely expressed by medial smooth muscle cells of normal and rejecting renal arterial vessels of all sizes by immunohistochemistry and in situ hybridization. PDGF-A chain is also expressed by a population of smooth muscle cells (shown by double immunolabeling with an antibody to alpha-smooth muscle actin) comprising the intima in chronic vascular rejection. In arteries demonstrating acute rejection, up-regulated expression of PDGF-A chain by endothelial cells was detected by both immunohistochemistry and in situ hybridization. In contrast, PDGF-B chain was identified principally in infiltrating monocytes within the rejecting arteries, similar to its localization in infiltrating monocytes in human atherosclerosis. Although less prominent than the case for PDGF-A chain, PDGF-B chain also was present in medial and intimal smooth muscle cells in both rejecting and nonrejecting renal arteries. PDGF-A and -B chains have now been localized at both the mRNA and protein levels to the intimal proliferative lesions of vascular rejection. These peptides, which are known stimuli for smooth muscle cell migration and proliferation in experimental vascular injury, may have similar stimulatory effects on smooth muscle cells in an autocrine and/or paracrine manner to promote further intimal expansion and lesion progression in this form of human vasculopathy.  相似文献   

9.
PURPOSE: To assess the ability of retinal Müller cells to generate tractional forces during dedifferentiation in culture and to assess their responsiveness to contraction-stimulating growth factors. METHODS: Müller cells were isolated from papain-DNase-digested porcine retina. The identity of the isolated cells was confirmed by immunodetection of carbonic anhydrase II (CA-II), cellular retinaldehyde-binding protein (CRALBP), glial fibrillary acidic protein (GFAP), vimentin, and alpha smooth muscle actin (alpha SMA). Tractional force generation was assessed as a function of Müller cell contraction of collagenous extracellular matrices in vitro. The effects of potential promoters were assessed by addition directly to culture medium. The contributions of specific promoting to the contraction-promoting activity in serum were assessed by adding neutralizing antibodies and measuring loss of stimulatory activity. RESULTS: Freshly isolated Müller cells did not generate substantial matrix contraction. However, this activity increased 150-fold within 12 days in culture and continued to increase during the next 21 days. Development of the capacity for extracellular matrix contraction coincided with the acquisition of immunodetectable alpha SMA and loss of GFAP. Matrix contraction by Müller cells was stimulated in a dose-dependent fashion by human serum, platelet-derived growth factor (PDGF), and insulin-like growth factor-I (IGF-I). Müller cells were not stimulated by transforming growth factor beta 1 (TGF beta 1), transforming growth factor beta 2 (TGF beta 2), or endothelin-1 (E1). Neutralizing antibodies against PDGF and IGF-I reduced the activity in human serum by 37% and 58%, respectively, and 87% when added together. CONCLUSIONS: Porcine Müller cells in culture acquire the ability to contract extracellular matrices and thus generate tractional forces. Acquisition of this activity coincides with alpha SMA expression and loss of GFAP. Further, this activity is dependent on the presence of exogenous promoters, including PDGF or IGF-I.  相似文献   

10.
Mesangial cells of the renal glomerulus are thought to have contractile properties, resembling those of smooth muscle cells. Since actin synthesis in mesangial cells is increased in selected animal models of glomerulonephritis, we evaluated the expression of alpha-smooth muscle actin (ASMA), the principal actin isoform found in smooth muscle cells, in biopsy specimens from patients with primary glomerular disorders and in control tissues. Normal glomeruli and glomeruli in acute tubulointerstitial disorders showed few or no ASMA-positive cells in the glomeruli. In contrast, ASMA expression in mesangial cells was increased in minimal change disease, focal segmental glomerulosclerosis, mesangial proliferative glomerulonephritis, membranous glomerulonephritis, and immunoglobulin A nephropathy. In membranoproliferative glomerulonephritis and cryoglobulinemic glomerulonephritis both mesangial and capillary loop ASMA-positive cells were observed with a segmental distribution. In addition, ASMA-positive interstitial cells were seen in many biopsy specimens and often were increased in number in biopsy specimens showing early interstitial fibrosis and tubular atrophy. We conclude that ASMA synthesis in mesangial cells is upregulated in a variety of glomerular disorders, frequently associated with increased cell proliferation and mesangial matrix production. This phenotypic change may be an indicator of mesangial cell activation after injury and may have important pathophysiologic consequences.  相似文献   

11.
PURPOSE: Under certain pathophysiologic conditions, the corneal endothelium can produce an abnormal posterior collagenous layer (PCL) that reduces light transmission. Previous studies suggest that formation of PCLs can result from transformation of endothelial cells to a proliferative myofibroblast phenotype. The purpose of this study was to determine the potential role of transforming growth factor (TGF)-beta on corneal endothelial transformation. METHODS: Three corneal buttons (6-mm diameter) were obtained from each cornea of 28 adult cats. After a 2-mm diameter mechanical scrape injury was made, each button was cultured for 24, 48, or 72 hours in serum-free medium (SFM) or SFM supplemented with 10% fetal calf serum, TGF-gamma1, TGF-beta2, TGF-beta3, basic fibroblast growth factor (bFGF), or TGF-beta1 and bFGF. Buttons were single and double labeled using phalloidin and antibodies to ZO-1, Ki67, fibronectin, alpha-smooth muscle (SM) actin, and vinculin. Counts of Ki67-positive cells were used as a measure of endothelial proliferation. RESULTS: Organ culture in TGF-beta1, beta2, or beta3 induced myofibroblast transformation of corneal endothelial cells, with formation of stress fibers containing alpha-SM actin, loss of normal pericellular ZO-1 organization, development of extracellular fibronectin fibrils, and formation of focal contacts as indicated by punctate vinculin staining. However, TGF-beta3 did not stimulate endothelial proliferation above that in serum-free control samples. Serum and bFGF each stimulated proliferation significantly, without inducing myofibroblast transformation. A combination of TGF-beta1 and bFGF resulted in both myofibroblast transformation and increased proliferation. CONCLUSIONS: These results suggest that TGF-beta plays a key role in the loss of normal endothelial differentiation, abnormal extracellular matrix synthesis, and myofibroblast transformation, which can induce development of PCLs. However, other factors such as bFGF seem to be required to stimulate concomitant proliferation of corneal endothelium.  相似文献   

12.
The accumulation of proteoglycans (PGs) in atherosclerosis contributes to disease progression and stenosis and may partly depend on local regulation by growth factors such as platelet-derived growth factor (PDGF) and transforming growth factor (TGF)-beta. In this study, the distribution of the major extracellular PGs is compared with that of PDGF and TGF-beta isoforms in developing lesions of atherosclerosis from hypercholesterolemic nonhuman primates. Strong immunostaining for decorin, biglycan, versican, and hyaluronan is observed in both intermediate and advanced lesions. Perlecan staining is weak in intermediate lesions but strong in advanced lesions in areas bordering the plaque core. Immunostaining for PDGF-B and TGF-beta1 is particularly prominent in macrophages in intermediate and advanced lesions. In contrast, TGF-beta2 and TGF-beta3 and PDGF-A are present in both macrophages and smooth muscle cells. Overall, PG deposits parallel areas of intense growth factor immunostaining, with trends in relative localization that suggest interrelationships among certain PGs and growth factors. Notably, decorin and TGF-beta1 are distributed similarly, predominantly in the macrophage-rich core, whereas biglycan is prominent in the smooth muscle cell matrix adjoining TGF-beta1-positive macrophages. Versican and hyaluronan are enriched in the extracellular matrix adjacent to both PDGF- and TGF-beta1-positive cells. These data demonstrate that PG accumulation varies with lesion severity, structural characteristics, and the proximity of PDGF and TGF-beta.  相似文献   

13.
BACKGROUND: Obstructive nephropathy is a primary cause of renal failure in infancy. Chronic unilateral ureteral obstruction (UUO) in the neonatal rat results in reduced renal expression of epidermal growth factor (EGF), renal tubular epithelial (RTE) cell apoptosis and interstitial fibrosis. We wished to determine whether these changes could be prevented by exogenous administration of EGF. METHODS: Thirty-three Sprague-Dawley rats underwent UUO within the first 48 hours of life, and received daily injections of either EGF (0.1 mg/kg/day) or saline (control) for the following seven days, after which obstructed and intact opposite kidneys were removed for study. These were compared to 11 sham-operated rats that received either no injections, EGF injections, or saline injections. Renal cell proliferation was determined by proliferating cell nuclear antigen, apoptosis was measured by the TUNEL technique, and the distribution of vimentin, clusterin, transforming growth factor-beta 1 (TGF-beta 1), and alpha-smooth muscle actin were determined by immunohistochemistry. Tubular dilation, tubular atrophy, and interstitial collagen deposition were quantitated by histomorphometry. RESULTS: Compared to controls, EGF treatment increased RTE cell proliferation in the obstructed kidney by 76%, decreased apoptosis by 80%, and reduced vimentin, clusterin and TGF-beta 1 immunostaining (all P < 0.05). EGF treatment reduced tubular dilation by 50%, atrophic tubules by 30%, and interstitial fibrosis by 50% (all P < 0.05). There was no significant effect of EGF on renal alpha smooth muscle actin distribution. There was no effect of saline or EGF injections on kidneys from sham-operated rats for any of the parameters studied. CONCLUSIONS: We conclude that EGF stimulates RTE cell proliferation and maturation and reduces apoptosis in the neonatal rat kidney subjected to chronic UUO. These effects may contribute to the reduction in tubular dilation, tubular atrophy, and interstitial fibrosis. By preserving renal development, administration of EGF attenuates the renal injury resulting from chronic UUO.  相似文献   

14.
Inhibition of 3-hydro-3-methylglutaryl coenzyme A reductase inhibits the production of mevalonate and has been shown to suppress proliferation in many cell types. Therefore, 3-hydro-3-methylglutaryl coenzyme A reductase inhibitors may have a beneficial effect in glomerular disease, because glomerular cell proliferation is a central feature in the active glomerular injury. This study examines the effect of simvastatin on glomerular pathology in a rat mesangial proliferative glomerulonephritis (GN) induced by anti-thymocyte antibody (anti-Thy 1.1 GN). There was no difference in the degree of the antibody and complement-mediated initial injuries between simvastatin-treated and control GN rats. The most pronounced feature of simvastatin-treated GN was the suppression of the early glomerular cell proliferation. The proliferative activity was maximal at day 4 after disease induction (26.5+/-7.0 of proliferating cell nuclear antigen-positive cells/glomerulus); however, approximately 70% of proliferation was suppressed by simvastatin treatment. At day 4 after disease induction, simvastatin administration also decreased alpha-smooth muscle actin expression in the glomerulus, which is a marker for mesangial cell activation. Inhibition of monocyte/macrophage recruitment into glomeruli by simvastatin was also a prominent feature. There was a 30% decrease in the number of glomerular ED-1+ cells by simvastatin treatment at day 2 after disease induction. Furthermore, simvastatin remarkably suppressed subsequent mesangial matrix expansion and type IV collagen accumulation in glomeruli. We also found that the platelet-derived growth factor expression was reduced in simvastatin-treated nephritic rats, which might simply reflect the reduction in mesangial cell proliferation and mesangial cellularity. There was no significant difference in plasma cholesterol or triglyceride levels between simvastatin- and vehicle-treated nephritic rats at day 2 and day 4, which corresponded to the times when simvastatin treatment resulted in a reduction in mesangial cell proliferation. In conclusion, this is the first report to find that mesangial cell proliferation and matrix expansion have been blocked by simvastatin in vivo. The protective effect of simvastatin in the matrix expansion in anti-Thy1.1 GN was partly by inhibition of mesangial cell proliferation and monocyte/ macrophage recruitment into glomeruli, which were independent of a change in circulating lipids.  相似文献   

15.
Cardiac hypertrophy is characterized by an increase in cell size in the absence of cell division and is accompanied by a number of qualitative and quantitative changes in gene expression. Most forms of hypertrophy in vivo are compensatory or adaptative responses to increased workload resulting from various physiological and/or pathological etiologies. Until severe pathological alterations become apparent, myocytes show no drastic morphological changes. On the level of gene expression, upregulation of the so-called fetal genes, i.e., beta-myosin heavy chain, alpha-skeletal and alpha-smooth muscle actin, and atrial natriuretic factor (ANF) may be observed concomitant with a downregulation of alpha-myosin heavy chain and the Ca pump of sarcoplasmic reticulum. The use of primary cell culture systems for cardiomyocytes as an in vitro model for the hypertrophic reaction has identified a number of different stimuli as mediators of cardiac myocyte hypertrophy. The molecular dissection of the different intracellular signaling pathways involved herein has uncovered a number of branching points to cytosolic and nuclear targets and has identified many interactions between these pathways. The individual administration of these hypertrophic stimuli, i.e., hormones, cytokines, growth factors, vasoactive peptides, and catecholamines, to cultured cardiomyocytes, reveals that each stimulus induces a distinct phenotype as characterized by gene expression pattern and cellular morphology. Surprisingly, triiodothyronine (T3) and basic fibroblast growth factor (bFGF) effect a similar cellular phenotype although they use completely different intracellular pathways. This phenotype is characterized by drastic inhibition of myofibrillar growth and by upregulation of alpha-smooth muscle actin. On the other hand, insulin-like growth factor (IGF) I, a factor promoting muscle cell differentiation, and bFGF, an inhibitor of differentiation, cause completely different cardiomyocyte phenotypes although both are known to signal via receptor tyrosine kinases and have been shown to activate the Ras-Raf-MEK-MAP kinase pathway. However, both IGF-I and bFGF depend on T3 to bring about their typical responses, i.e., T3 is permissive for the action of these two growth factors on the expression of alpha-smooth muscle actin and cell morphology. Most of the hypertrophic stimuli are balanced under normal circumstances in vivo. When this balance is disturbed, however, a pathological heart phenotype may become dominant. Thus the knowledge of signaling pathways and cellular responses triggered by hypertrophic stimuli may be essential for the implementation of therapeutic strategies in the treatment of cardiac hypertrophy.  相似文献   

16.
The effect of the three platelet-derived growth factor (PDGF) isoforms AA, AB, and BB on migration was investigated in cultured human saphenous vein smooth muscle cells. The modified Boyden chamber technique yielded efficacies BB > AB, AA = 0. However, the BB concentration-response relationship displayed a pronounced peak, occurring between 1 and 10 ng/mL, with no response above this range. Checkerboard analysis showed that the promotion of migration at low concentrations was chemotactic in nature but that the downturn was independent of gradient. Furthermore, at high concentrations BB was able to prevent chemotaxis induced by fetal calf serum and epidermal growth factor (EGF). Experiments using low concentrations of BB in combination with high concentrations of AA to saturate PDGF alpha-receptors in the presence and absence of a neutralizing antibody to alpha-receptors revealed that alpha-receptor activation induced partial inhibition of chemotaxis but this did not account for the inhibition of migration by high concentrations of BB. Despite possessing no significant chemotactic action itself, high concentrations of the AB isoform completely inhibited BB induced chemotaxis. Taken together these results suggest that the chemotactic signal induced by PDGF is dominated by PDGF beta-receptors and switches from positive at low concentrations to negative at higher concentrations. Stimulation of DNA synthesis by the three isoforms (as measured by [3H] thymidine incorporation) yielded saturable responses for the AB and BB isoforms, with similar efficacy and weak or no response for the AA isoform. Concentration-dependent patterns of tyrosine phosphorylation of certain proteins mirrored the form of the chemotactic response and suggest one possible underlying regulatory mechanism to account for the disparity between PDGF-induced chemotaxis and DNA synthesis.  相似文献   

17.
To examine the development of pancreatic fibrosis in alcoholics, the fibrosis types grouped according to Martin's classification were examined by immunohistochemistry using an antibody against alpha-smooth muscle actin (alpha-SMA). The initial stage of periacinar collagenization was also investigated by electron microscopy. The total incidence of pancreatic fibrosis at autopsy of the 29 alcoholics was significantly higher than that of the 40 non-alcoholics. Intralobular sclerosis was observed to be the most frequent type of fibrosis regardless of alcohol intake. No differences in the enhancement of alpha-SMA expression in each type of fibrosis were found between the alcoholics and non-alcoholics. Electron microscopically, myofibroblasts were found around acini in the early stage of periacinar collagenization, and were accompanied by numerous fine filaments (8-15 nm in diameter). The various changes in zymogen granules (ZG), lysosomes and lipid droplets were augmented in the acinar cells of alcoholics. Medium-density materials were also found in dilated rough endoplasmic reticulum (RER). The contents of ZG and RER occasionally leaked out. In conclusion, pancreatic fibrosis was increased in alcoholics; myofibroblasts may play an important role in the initial stage of periacinar collagenization; and the intracellular transport blockage of protein as represented by abnormalities of ZG, ER and lysosomes may contribute to the development of periacinar collagenization.  相似文献   

18.
The formation of atherosclerotic lesions is characterized by invasion of vascular smooth muscle cells (VSMC) into the tunica intima of the arterial wall and subsequently by increased proliferation of VSMC, a process apparently restricted to the intimal layer of blood vessels. Both events are preceded by the pathological overexpression of several growth factors, such as platelet-derived growth factor (PDGF) which is a potent mitogen for VSMC and can induce their chemotaxis. PDGF is generally not expressed in the normal artery but it is upregulated in atherosclerotic lesions. We have previously shown that PDGF-BB specifically stimulates proliferating VSMC to secrete a 340 kDa hyaluronic acid (HA-340). Here, we present evidence regarding the biological functions of this glycan. We observed that HA-340 inhibited the PDGF-induced proliferation of human VSMC in a dose-dependent manner and enhanced the PDGF-dependent invasion of VSMC through a basement membrane barrier. These effects were abolished following treatment of HA-340 with hyaluronidase. The effect of HA-340 on the PDGF-dependent invasion of VSMC coincided with increased secretion of the 72-kDa type IV collagenase by VSMC and was completely blocked by GM6001, a hydroxamic acid inhibitor of matrix metalloproteinases. HA-340 did not exert any chemotactic potency, nor did it affect chemotaxis of VSMC along a PDGF gradient. In human atheromatic aortas, we found that HA-340 is expressed with a negative concentration gradient from the tunica media to the tunica intima and the atheromatic plaque. Our findings suggest that HA-340 may be linked to the pathogenesis of atherosclerosis, by modulating VSMC proliferation and invasion.  相似文献   

19.
PURPOSE: Smooth muscle cell (SMC) migration is an essential feature of the intimal hyperplastic process that so frequently limits the patency of vascular reconstructions. The purpose of this investigation was to evaluate the effect of a series of integrins, or cell surface receptors that mediate cellular attachment, on platelet-derived growth factor (PDGF) and extracellular matrix (ECM) protein-induced migration of human SMCs. METHODS: Immunofluorescence staining was used to search for various integrins and subunits on the surface of SMCs derived from human saphenous vein. Chemotaxis and haptotaxis of SMCs to various matrix proteins and PDGF were assayed using a 48-well microchemotaxis chamber in the presence or absence of antibodies that blocked the function of these integrins. RESULTS: Several subunits (beta 1, alpha 2, alpha 5) and one integrin (alpha v beta 3) were identified in saphenous vein SMCs. The beta 1 integrin antibody inhibited chemotaxis to collagen I and IV, laminin, and PDGF. The alpha 2 integrin antibody inhibited collagen I and IV, and laminin-induced chemotaxis. The alpha 5 integrin antibody had no effect on SMC migration. The alpha v beta 3 integrin antibody inhibited chemotaxis to PDGF but not to the ECM proteins. CONCLUSIONS: Integrins are necessary for SMC migration induced by PDGF and ECM proteins. The integrin or subunits responsible for facilitating migration varies with the stimulant. Agonists designed to inhibit integrin function might be used to suppress SMC migration and suppress the formation of intimal hyperplasia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号