首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes a system architecture and CMOS implementation that leverages the inherently high mechanical quality factor (Q) of a MEMS gyroscope to improve performance. The proposed time domain scheme utilizes the often-ignored residual quadrature error in a gyroscope to achieve, and maintain, perfect mode-matching (i.e., $sim$0 Hz split between the high-Q drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS IC and control algorithm have been interfaced with a 60 $mu{hbox {m}}$ thick silicon mode-matched tuning fork gyroscope $({rm M}^{2}mathchar"707B {rm TFG})$ to implement an angular rate sensing microsystem with a bias drift of 0.16$^{circ}/{hbox{hr}}$. The proposed technique allows microsystem reconfigurability—the sensor can be operated in a conventional low-pass mode for larger bandwidth, or in matched mode for low-noise. The maximum achieved sensor Q is 36,000 and the bandwidth of the microsensor can be varied between 1 to 10 Hz by electronic control of the mechanical frequencies. The maximum scale factor of the gyroscope is 88 ${hbox{mV}}/^{circ}/{hbox{s}}$ . The 3$~$ V IC is fabricated in a standard 0.6 $ mu{hbox {m}}$ CMOS process and consumes 6 mW of power with a die area of 2.25 ${hbox {mm}}^{2}$.   相似文献   

2.
A wideband low-noise amplifier (LNA) based on the current-reused cascade configuration is proposed. The wideband input-impedance matching was achieved by taking advantage of the resistive shunt–shunt feedback in conjunction with a parallel LC load to make the input network equivalent to two parallel $RLC$-branches, i.e., a second-order wideband bandpass filter. Besides, both the inductive series- and shunt-peaking techniques are used for bandwidth extension. Theoretical analysis shows that both the frequency response of input matching and noise figure (NF) can be described by second-order functions with quality factors as parameters. The CMOS ultra-wideband LNA dissipates 10.34-mW power and achieves ${ S}_{11}$ below $-$8.6 dB, ${ S}_{22}$ below $-$10 dB, ${ S}_{12}$ below $-$26 dB, flat ${ S}_{21}$ of 12.26 $pm$ 0.63 dB, and flat NF of 4.24 $ pm$ 0.5 dB over the 3.1–10.6-GHz band of interest. Besides, good phase linearity property (group-delay variation is only $pm$22 ps across the whole band) is also achieved. The analytical, simulated, and measured results agree well with one another.   相似文献   

3.
A tunable, high-$Q$ RF filter suitable for wireless transmitters has been implemented in a standard digital 0.18-$muhbox{m}$ CMOS technology. Active circuits are used to enhance the $Q$ of two independent LC resonators, which are cascaded to form a wide bandwidth filter that can be tuned in both center frequency and bandwidth. A 5.145-GHz stagger-tuned filter with a 200-MHz bandwidth and 0.8 dB of ripple is demonstrated in an 802.11a sliding-IF transmitter. The transmitter provides spectral mask and EVM-compliant output power of $-$8.26 dBm for a 64-QAM OFDM signal. At lower output power, an EVM of $-$ 32.3 dB is achieved.   相似文献   

4.
A 5-GHz dual-path integer-$N$ Type-II phase-locked loop (PLL) uses an LC voltage-controlled oscillator and softly switched varactors in an overlapped digitally controlled integral path to allow a large fine-tuning range of approximately 160 MHz while realizing a low susceptibility to noise and spurs by using a low $K_{rm VCO}$ of 3.2 MHz/V. The reference spur level is less than $-$70 dBc with a 1-MHz reference frequency and a total loop-filter capacitance of 26 pF. The measured phase noise is $-$75 and $-$115 dBc/Hz at 10-kHz and 1-MHz offsets, respectively, using a loop bandwidth of approximately 30 kHz. This 0.25-${hbox{mm}}^{2}$ PLL is fabricated in a 90-nm digital CMOS process and consumes 11 mW from a 1.2-V supply.   相似文献   

5.
In this paper, we will study the exponential sum $sum_{xin {BBF}_q}chi(alpha x^{(p^k+1)/2}+beta x)$ that is related to the generalized Coulter–Matthews function $x^{(p^k+1)/2}$ with $k/{rm gcd}(m,k)$ odd. As applications, we obtain the following: the correlation distribution of a $p$-ary $m$-sequence and a decimated $m$-sequence of degree ${p^k+1 over 2}$;   相似文献   

6.
In this letter, we propose using an oxide-filled isolation structure followed by $hbox{N}_{2}/hbox{H}_{2}$ postgate annealing to reduce the leakage current in AlGaN/GaN HEMTs. An off-state drain leakage current that is smaller than $hbox{10}^{-9} hbox{A/mm}$ (minimum $hbox{5.1} times hbox{10}^{-10} hbox{A/mm}$) can be achieved, and a gate leakage current in the range of $hbox{7.8} times hbox{10}^{-10}$ to $hbox{9.2} times hbox{10}^{-11} hbox{A/mm}$ ($V_{rm GS}$ from $-$10 to 0 V and $V_{rm DS} = hbox{10} hbox{V}$) is obtained. The substantially reduced leakage current results in an excellent on/off current ratio that is up to $hbox{1.5} times hbox{10}^{8}$. An improved flicker noise characteristic is also observed in the oxide-filled devices compared with that in the traditional mesa-isolated GaN HEMTs.   相似文献   

7.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

8.
This paper discusses the design of a novel photoacoustic microscopy imaging system with promise for studying the structure of tissue microvasculature for applications in visualizing angiogenesis. A new 16 channel analog and digital high-frequency array based photoacoustic microscopy system (PAM) was developed using an Nd:YLF pumped tunable dye laser, a 30 MHz piezo composite linear array transducer, and a custom multichannel receiver electronics system. Using offline delay and sum beamforming and beamsteering, phantom images were obtained from a 6 $mu{hbox {m}}$ carbon fiber in water at a depth of 8 mm. The measured $-6~{rm dB}$ lateral and axial spatial resolution of the system was $100pm 5~mu{hbox {m}}$ and $45pm 5~mu{hbox {m}}$, respectively. The dynamic focusing capability of the system was demonstrated by imaging a composite carbon fiber matrix through a 12.5 mm imaging depth. Next, 2-D in vivo images were formed of vessels around 100 $mu{hbox {m}}$ in diameter in the human hand. Three-dimensional in vivo images were also formed of micro-vessels 3 mm below the surface of the skin in two Sprague Dawley rats.   相似文献   

9.
A V-Band CMOS VCO With an Admittance-Transforming Cross-Coupled Pair   总被引:1,自引:0,他引:1  
A novel circuit topology suitable for the implementation of CMOS voltage-controlled oscillators (VCOs) at millimeter-wave frequencies is presented in this paper. By employing transmission line segments to transform the admittance of the additional cross-coupled pair, the proposed LC-tank VCO can sustain fundamental oscillation at a frequency close to the $f _{max}$ of the transistors. Using a standard 0.18 $muhbox{m}$ CMOS process, a V-band VCO is realized for demonstration. The fabricated circuit exhibits a frequency tuning range of 670 MHz in the vicinity of 63 GHz. The measured output power and phase noise at 1 MHz offset are $-hbox{15~dBm}$ and $-hbox{89~dBc}/hbox{Hz}$ , respectively. Operated at a 1.8 $~$V supply voltage, the VCO core and the output buffer consume a total DC current of 55 mA.   相似文献   

10.
For a linear block code ${cal C}$, its stopping redundancy is defined as the smallest number of check nodes in a Tanner graph for ${cal C}$, such that there exist no stopping sets of size smaller than the minimum distance of ${cal C}{bf .},$ Schwartz and Vardy conjectured that the stopping redundancy of a maximum-distance separable (MDS) code should only depend on its length and minimum distance.   相似文献   

11.
Quadrature bandpass $SigmaDelta$ modulators based on polyphase filters are suited for analog-to-digital conversion in GSM/EDGE low-IF receivers. This paper presents a continuous-time quadrature bandpass sigma-delta $(SigmaDelta)$ modulator with a chain of integrators with weighted capacitive feedforward summation (CICFF) topology—which is a desirable solution for implementation in low power applications. A new compensation scheme for the polyphase filter is proposed. The summation of feedforward signals is implemented by weighted capacitors, without the necessity of any additional active components. The effectiveness of the proposed architecture is proved on a test chip which was designed in a standard 0.25 $muhbox{m}$ CMOS technology. The designed $SigmaDelta$ modulator has a power consumption of 2.7 mW at 1.8 V supply voltage, a dynamic range of 90.3 dB and a peak SNDR of 86.8 dB. The chip area is $0.5times 1.4 {hbox{mm}}^{2}$ including pads.   相似文献   

12.
New hydrogen-sensing amplifiers are fabricated by integrating a GaAs Schottky-type hydrogen sensor and an InGaP–GaAs heterojunction bipolar transistor. Sensing collector currents ( $I_{rm CN}$ and $I_{rm CH}$) reflecting to $hbox{N}_{2}$ and hydrogen-containing gases are employed as output signals in common-emitter characteristics. Gummel-plot sensing characteristics with testing gases as inputs show a high sensing-collector-current gain $(I_{rm CH}/I_{rm CN})$ of $≫hbox{3000}$. When operating in standby mode for in situ long-term detection, power consumption is smaller than 0.4 $muhbox{W}$. Furthermore, the room-temperature response time is 85 s for the integrated hydrogen-sensing amplifier fabricated with a bipolar-type structure.   相似文献   

13.
Given a prime $p$ and a positive integer $n$ , we show that the shifted Kloosterman sums $$sum _{x in BBF _{p^{n}}} psi (x + ax^{p^{n}-2}) = sum _{xin BBF _{p^{n}}^{ast }} psi(x + ax^{-1}) + 1, quad a inBBF _{p^{n}}^{ast }$$ where $psi$ is a nontrivial additive character of a finite field $BBF _{p^{n}}$ of $p^{n}$ elements, do not vanish if $a$ belongs to a small subfield $BBF_{p^{m}} subseteq BBF _{p^{n}}$. This complements recent results of P. Charpin and G. Gong which in turn were motivated by some applications to bent functions.   相似文献   

14.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

15.
This letter reports on 10-GHz and 20-GHz channel-spacing arrayed waveguide gratings (AWGs) based on InP technology. The dimensions of the AWGs are 6.8$,times,$8.2 mm$^{2}$ and 5.0$,times,$6.0 mm$^{2}$, respectively, and the devices show crosstalk levels of $-$12 dB for the 10-GHz and $-$17 dB for the 20-GHz AWG without any compensation for the phase errors in the arrayed waveguides. The root-mean-square phase errors for the center arrayed waveguides were characterized by using an optical vector network analyzer, and are 18 $^{circ}$ for the 10-GHz AWG and 28$^{circ}$ for the 10-GHz AWG.   相似文献   

16.
A $g_{m}$-boosted resistive feedback low-noise amplifier (LNA) using a series inductor matching network and its application to a 2.4 GHz LNA is presented. While keeping the advantage of easy and reliable input matching of a resistive feedback topology, it takes an extra advantage of $g_{m}$ -boosting as in inductively degenerated topology. The gain of the LNA increases by the $Q$ -factor of the series RLC input network, and its noise figure (NF) is reduced by a similar factor. By exploiting the $g_{m}$-boosting property, the proposed fully integrated LNA achieves a noise figure of 2.0 dB, S21 of 24 dB, and IIP3 of ${- 11}~ hbox{dBm}$ while consuming 2.6 mW from a 1.2 V supply, and occupies 0.6 ${hbox {mm}}^{2}$ in 0.13-$mu{hbox {m}}$ CMOS, which provides the best figure of merit. This paper also includes an LNA of the same topology with an external input matching network which has an NF of 1.2 dB.   相似文献   

17.
Extended Fault-Tolerant Cycle Embedding in Faulty Hypercubes   总被引:1,自引:0,他引:1  
We consider fault-tolerant embedding, where an $n$-dimensional faulty hypercube, denoted by $Q_{n}$, acts as the host graph, and the longest fault-free cycle represents the guest graph. Let $F_{v}$ be a set of faulty nodes in $Q_{n}$. Also, let $F_{e}$ be a set of faulty edges in which at least one end-node of each edge is faulty, and let ${cal F}_{e}$ be a set of faulty edges in which the end-nodes of each edge are both fault-free. An edge in $Q_{n}$ is said to be critical if it is either fault-free or in $F_{e}$. In this paper, we prove that there exists a fault-free cycle of length at least $2^{n}-2vert F_{v}vert$ in $Q_{n} (ngeq 3)$ with $vert{cal F}_{e}vertleq 2n-5$, and $vert F_{v}vert+vert{cal F}_{e}vertleq 2n-4$ , in which each node is incident to at least two critical edges. Our result improves on the previously best known results reported in the literature, where only faulty nodes or faulty edges are considered.   相似文献   

18.
As an attempt to considerably reduce the equivalent contact resistivity of Schottky junctions, this letter studies the integration of rare-earth silicides, known to feature the lowest Schottky barriers (SBs) to electrons, coupled with a dopant segregation based on arsenic $(hbox{As}^{+})$ implantation. Both erbium (Er) and ytterbium (Yb) have been considered in the implant-before-silicide (IBS) and implant-to-silicide flavors. It is shown that the two schemes coupled with a limited thermal budget (500 $^{circ}hbox{C}$) produce an SB below the target of 0.1 eV. The implementation of IBS arsenic-segregated $hbox{YbSi}_{1.8}$ junctions in an n-type SB-MOSFET is demonstrated for the first time resulting in a current-drive improvement of more than one decade over the dopant-free counterpart.   相似文献   

19.
A source ${mmb X}$ goes through an erasure channel whose output is ${mmb Z}$. The goal is to compress losslessly ${mmb X}$ when the compressor knows ${mmb X}$ and ${mmb Z}$ and the decompressor knows ${mmb Z}$. We propose a universal algorithm based on context-tree weighting (CTW), parameterized by a memory-length parameter $ell$. We show that if the erasure channel is stationary and memoryless, and ${mmb X}$ is stationary and ergodic, then the proposed algorithm achieves a compression rate of $H(X_0vert X_{-ell}^{-1}, Z^ell)$ bits per erasure.   相似文献   

20.
An optical subassembly of MUX/DEMUX where optical devices are hybrid-integrated on a silicon optical bench (SiOB) using a passive alignment method is reported. A tight tolerance of positional and tilting angular accuracy is required for optical devices attachment in order to maximize the coupling efficiency. The critical positioning transverse to the optical axis merely depends on the symmetry, and accuracy of the position and shape of trenches. Any inaccuracy primarily affects the noncritical positioning, i.e., $z$-axis and $theta{ z}$, in the direction along the optical axis; misalignment accumulated and causes undesired insertion loss. All the piece parts, i.e., mirror, thin-film filters (TFFs), ball lens, SiOB, etc., have a defined tolerance in their dimensions and surfaces which increases the challenge in achieving high placement accuracy along the optical axis. The effects from these inherent inaccuracies of the position and shape of trenches and piece parts could be minimized by optimizing the adhesive volume, improve the bottom flatness, proper procedure selection. Misalignment at each axis, e.g., x-, y-, z-, $theta{ x}$, $theta{ y}$, and $theta{ z}$ was characterized and its effect to the coupling efficiency was discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号