首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mark C. Pirlo   《Geothermics》2004,33(6):281
The hydrogeochemistry of thermal artesian groundwaters flowing from 12 stock bores along the Birdsville Track Ridge in northeast South Australia has been examined. The Na-HCO3-Cl type groundwater composition has provided a basis for the application of chemical geothermometers to estimating aquifer temperatures and has allowed comparisons of various silica and cation geothermometers. Aquifer and bore penetration depth decrease between Birdsville and Marree from 1220 m to 170 m. A corresponding decrease in measured emergence temperature is also observed (94–31 °C). Chalcedony geotemperature estimates ranging from 110 °C to 41 °C between Birdsville and Marree are considered the most accurate of the various geothermometers tested. Log(Q/K) versus T diagrams have also been evaluated to determine likely aquifer mineral assemblages and reservoir temperatures (111–39 °C). The Birdsville Track Ridge acts as a conduit for low salinity groundwater (total dissolved solids range from 640 mg/l at Birdsville to 1900 mg/l at Marree) in the Great Artesian Basin. Old, slowly migrating groundwater from the deeper basins on either side of the ridge is characterised by higher emergence temperature and higher total dissolved solids. This old groundwater is inferred to have mixed with the younger, lower temperature, lower salinity groundwater that is migrating relatively rapidly along the Birdsville Track Ridge axis. Since the various geothermometers provide distinct types of information, evidence for the mixing is provided by the interpretation of the different temperature estimates. Silica equilibration temperatures reflect aquifer temperatures along the ridge axis, whereas cation geotemperatures partly preserve higher temperatures from the deeper, flanking basins. This study demonstrates how the thermal regime and hydrodynamics of an area can be characterised using a sparse dataset, thus representing a novel and effective methodology for regions anomalous to this central Australian example.  相似文献   

2.
Hydrogeochemistry and geothermal characteristics of the Tertiary White Lake basin are described in order to provide constraints on the hydrogeology and thermal regime of the basin. The basin can be divided into three flow subsystems on the basis of chemical and isotopic variations. The groundwaters evolve chemically from young Ca–Mg–HCO3 type waters in the shallow surficial sediments to Na-dominated waters in the deeper intermediate system. Surface waters and shallow groundwaters collected from wells completed in overburden have undergone extensive evaporation as evidenced by their enriched δ18O and δ2H composition. Minor evaporation identified in the isotope composition of groundwater from domestic wells completed in bedrock, as well as from springs, suggests a local to intermediate origin for these waters, and perhaps mixing with shallow evaporative waters. In contrast, the uniform isotope signatures of deep basin waters measured both spatially and vertically suggest recharge at higher elevations, and a much deeper circulation system that is essentially isolated from the shallow subsurface. Chemical geothermometry indicates that spring waters and bedrock well waters have equilibrated at temperatures of less than 20 and 60°C, respectively. Groundwaters encountered by deep diamond drill holes, with equilibration temperatures of less than 80°C, are representative of intermediate flow systems, and may serve to modify the heat flow regime in the basin. Regional groundwater flow within the basin is complex due to numerous faults that exert a strong influence on fluid circulation patterns. Transport of heat in the subsurface, which has resulted in variations in the measured thermal gradients across the basin, occurs either at depths greater than those investigated in this study or has been significantly influenced by the circulation of cooler groundwater in the central part of the basin.  相似文献   

3.
Chemical and isotope geothermometers, i.e. the Na–K, K–Mg, quartz and δ18O(SO4–H2O), have been applied to estimate the reservoir temperature of the thermal springs in the northern areas of Pakistan. The chemical types of the thermal waters and the effects of mixing of shallow cold water with the thermal end-members are discussed. These waters are neutral to slightly alkaline and have low dissolved contents. Sodium is the dominant cation in almost all the cases. In terms of anions, the hot waters of Budelas are of the SO4 type, those of Tatta Pani are of mixed character (SO4 and HCO3), and the waters from the remaining areas show HCO3 domination. An absence of tritium in Tatta Pani and Tato thermal springs indicates that they do not have any contribution of shallow young water. In the case of the Murtazabad springs, the wide range of tritium concentrations, negative correlations with surface temperature and Cl, and positive correlation between Na and Cl show that the shallow cold groundwater is mixing with thermal water in different proportions. For the mixed water of Murtazabad thermal springs, ‘isochemical modelling’ using the Na–K, K–Mg and quartz geothermometers indicates an equilibrium temperature in the range 185–200 °C. The δ18O(SO4–H2O) geothermometer gives relatively low temperatures for three springs, whereas two samples are close to the 185–200 °C temperature interval. The reservoir temperatures of Tatta Pani springs (100–120 °C), determined by Na–K and quartz geothermometers, are in good agreement. The δ18O(SO4–H2O) geothermometer gives a relatively higher range (140–150 °C) for most of the Tatta Pani springs. For Tato spring, the isotope and chemical geothermometers (except for the K–Mg) agree on an equilibrium temperature of about 170 °C. Reservoir temperatures of the remaining minor fields are not conclusive due to the lack of sufficient data.  相似文献   

4.
The Miravalles high-temperature geothermal reservoir, located in the northwestern part of Costa Rica, is liquid-dominated. Reservoir temperatures generally range between 230 and 240 °C. The highest measured value is 255 °C. Bottom-hole measurements and solute geothermometry indicate that thermal conditions within the reservoir are very stable over time. The waters discharged from the wells have a neutral or slightly alkaline pH and are of the sodium-chloride type. Based on isotope data, the main recharge zone appears to be located on the northeastern side of the Guanacaste Cordillera. Several mixing trends have been identified between reservoir fluids and regional groundwaters. Gas discharges are dominated by CO2, with minor amounts of H2S and N2. Relative N2, Ar and He contents reveal a typical arc-type signature and significant inflow of meteoric-derived gases. Cl–SiO2-enthalpy and δ18O–δ2H–Cl relationships suggest the existence of a maturation trend that is the result of both natural (i.e. direct drainage of deeper fluids) and anthropogenic causes (reinjection of Cl-rich waste waters). Acid fluids with SO4-acidity (pH ranging between 2.4 and 3.7) have been encountered in three wells at the eastern border of the well field. Preliminary data assessment indicates two possible sources, either superficial H2S oxidation or inflow of “immature” volcanic waters.  相似文献   

5.
The parent geothermal water proposed for the Chachimbiro geothermal area has calculated values of 2250 mg/L Cl and approximately 5 bar PCO2. It comes from a reservoir having an estimated temperature of 225–235 °C, although temperatures somewhat higher than 260 °C may be present at the roots of the system. The geothermal reservoir at Chachimbiro is recharged mainly by meteoric water (about 92%) and secondarily by arc-type magmatic water. Carbon and sulfur isotope data support a magmatic origin for the C and S species entering the geothermal system from below, consistent with indications provided by He isotopes.The thermal springs of Na–Cl to Na–Cl–HCO3 type located in the Chachimbiro area originate through dilution of the parent geothermal water and have reached different degrees of re-equilibration with country rocks at lower temperatures.  相似文献   

6.
The Troll and Jotun thermal springs of northern Svalbard, with temperatures of up to 25.6°C, are derived from a major fault forming the junction between Devonian sandstones and Proterozoic marbles, mica schists and gneisses. The Troll waters are dominated by Na–HCO3 compositions and the Jotun waters by Na–Cl compositions. The pristine thermal water source has a sub-neutral pH and is highly reducing. Taken at face value, common geothermometers suggest temperatures at depth of 130–180°C for the Troll springs (corresponding to a depth of 1.6–2.3 km), with 10–30% thermal water diluted by 70–90% cold water. Such geothermometers may, however, be inappropriate to the cool, high CO2 waters of Bockfjord, and real temperatures at depth and dilution factors are probably considerably lower. The salinity of the thermal water appears to be only partially derived from water–rock interaction; Br\Cl ratios suggest that seawater or possibly evaporites may be a source of chloride salinity.  相似文献   

7.
The Puyehue-Cordón Caulle area (40.5°S) hosts one of the largest active geothermal systems of Southern Chile, comprising two main thermal foci, Cordón Caulle and Puyehue. Cordón Caulle is a NW-trending volcanic depression dominated by fumaroles at the top (1500 m) and boiling springs at the northwest end (1000 m). In the latter, the alkaline-bicarbonate composition of the springs with low Mg (<0.06 mg/l) relative to the local meteoric waters (5 mg/l), low chloride (<60 mg/l), high silica (up to 400 mg/l) and δ18O–δD values close to the Global Meteoric Water Line (GMWL), in combination with the large outflow (100 l/s), suggest the existence of a secondary steam-heated aquifer overlying a main vapor-dominated system at Cordón Caulle. Subsurface temperatures of the secondary aquifer are estimated to be about 170–180 °C (corrected silica geothermometers). The Puyehue thermal area, on the other hand, includes Mg-rich hot springs discharging along stream valleys, with maximum temperatures of 65 °C and a δ18O–δD signature resembling the local meteoric composition, which suggests that the surface manifestations contain a reservoir component that is strongly diluted by meteoric waters. Topographic/hydrologic and chemical characteristics suggest that Cordón Caulle and Puyehue represent two separate upflows.  相似文献   

8.
Sixty-five water samples and seven associated gas samples have been collected on Lesbos island. The lithology and structural setting have resulted in two main types of hydrological circulation: a shallow circulation hosting low-salinity cold waters and a deeper one, hosting high-salinity hot waters that often emerge in thermal springs near the coast. The cold waters are characterized by Ca(Mg)-HCO3(SO4) composition, while the thermal waters generally have an Na-Cl composition. The chemical features of the former can be explained by their circulation in the ophiolite-bearing phyllitic basement and volcanic rocks. Waters circulating in the ultramafic layers of the basement are richer in Mg than the waters whose circulation is mainly within marble levels or volcanic rocks. The Na-Cl thermal waters are characterized by salinities ranging from 1910 to 35,700 mg/kg. As indicated by previous hydrogeochemical and isotopic studies, the Na-Cl composition of the thermal waters on Lesbos is the result of mixing between shallow meteoric waters and marine waters. While interacting with the minerals of the geothermal reservoir, the saline waters retain the Na/Cl sea water ratio but become enriched in Ca2+ and depleted in Mg2+ with respect to sea water.Processes of hydrothermal alteration at depth are activated by a gas phase enriched in CO2, which reaches the geothermal reservoir by rising along the deep fractures of the basement. Thermodynamic calculations based on hydrothermal alteration processes occurring at the estimated temperatures of the geothermal reservoir (about 120 °C) indicate that the thermal waters of Lesbos are in equilibrium with talc and dolomite.  相似文献   

9.
The Cap Bon region of northeastern Tunisia is part of a young continental margin that presents a thick column of sediments deposited mainly during Cretaceous and Miocene extended tectonic episodes. This sedimentary package is characterised by broad synclines alternating with NE–SW trending anticlines, and is affected by numerous NE–SW, NW–SE and E–W striking faults. Oligo-Miocene sandstones constitute the most important potential reservoir rocks in the region.The distribution of subsurface temperatures in the Cap Bon basin reflects local groundwater circulation patterns and correlates with the location of known oil and gas fields. The results of geothermal studies could therefore prove useful in the search for new hydrocarbon resources in the region. Subsurface temperatures were measured in deep oil exploration and shallow water wells. Local geothermal gradients range from 25 to 35 °C/km, showing higher values in the Korbous and Zennia areas, which correspond to zones of groundwater discharge and convergence in the Oligo-Miocene aquifer system, respectively.Analysis of thermo-hydraulic and geochemical data relative to the thermal springs in the Korbous region along the Mediterranean coast has made a useful contribution to geothermal prospecting for potential deep reservoirs. Positive geothermal gradient anomalies correspond to areas of ascending thermal waters (i.e. discharge areas), whereas negative anomalies indicate areas of infiltrating colder meteoric waters (i.e. recharge areas). The zones of convergence of upward-moving water and groundwater may be associated with petroleum occurrences.  相似文献   

10.
The Latera and Torre Alfina geothermal fields were discovered in the Vulsini Mts district (central Italy) in the 70s. The fluid produced by the two geothermal systems is a high pCO2 (around 7 MPa) sodium chloride solution (T.D.S. is 9200 ppm at Latera and 7800 at Torre Alfina), with high SiO2 and H3BO3 contents. The fluid temperature taken at well bottom is about 155°C at Torre Alfina, whereas at Latera it ranges from 200 to over 350°C. In spite of these temperatures, recorded in producing wells, previous geochemical prospectings using geothermometers in natural thermal manifestations had predicted temperatures no higher than 140°C in all the Vulsini district. This contrasting feature between real temperatures and those evaluated during prospecting is caused by the fast circulation of large amounts of meteoric waters in the aquifer located in the shallow parts of the carbonate reservoir formations, and by the short interaction between the latter and the deep geothermal fluids.In the present study a new geochemical survey on thermal and cold springs, stream samples, as well as natural gas emissions has been carried out. A critical review of the main geothermometers, some considerations about the hydraulic behavior of the reservoir formations, and the cross comparison between NH4+/B ratio, pCO2 and SiO2 content in both cold and thermal waters, have led to the conclusion that in the Vulsini Mts there are no shallow anomalous areas apart from those already discovered at Latera and Torre Alfina.The present method could be successfully applied in other geothermal systems, where the potential reservoir is represented by carbonate formations.  相似文献   

11.
Lesbos Island has several thermal manifestations linked to extensional active faults that act as channels for the ascent of deep thermal fluids.The present work describes detailed geochemical exploration aimed at evaluating the potential of the Lesbos Island geothermal resource. Exploration was carried out on the three sites (Kalloni-Stipsi, Petra-Argenos and Polichnitos) that have the most favourable hydrogeological and structural setting on the island.Hydrogeochemical data reveal the presence between Kalloni and Stipsi of a shallow thermal aquifer with temperatures below boiling point, which coincides with carbon dioxide and temperature anomalies in the overlying groundwaters. All the thermal waters in the study area have fairly similar physico-chemical features; their geochemical temperature is in the range 115–125°C. While low-medium enthalpy geothermal resources are relatively abundant in the three selected areas of Lesbos Island, the presence of a high enthalpy geothermal system is still the subject of debate.  相似文献   

12.
Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia   总被引:1,自引:0,他引:1  
The hydrothermal mineral assemblages found in eight wells (with a depth range of 1320–2500 m) of the active geothermal field of Aluto-Langano (Ethiopia) indicate a complex evolution of water-rock interaction processes. The zone of upflow is characterized by high temperatures (up to 335°C) and the presence of a propylitic alteration (epidote, calcite, quartz and chlorite, as major phases) coexisting with calcite and clay minerals. The zone of lateral outflow is characterized by mixing of deep and shallow waters and the occurrence of a calcite-clay alteration that overprints a previous propylitic assemblage. Clay minerals have a mushroom-shaped zonal distribution consistent with the present thermal structure of the field. Microprobe analyses have been carried out on chlorite and illite in order to apply several geothermometers. Most of the chlorite is iron-rich chlorite. It is found that the temperatures calculated from the chlorite geothermometer (159–292°C) after Cathelineau and Nieva [Contrib. Mineral. Petrol. 91, 235–244 (1985)] are in good agreement with in-hole measured temperatures (155–300°C). In the upflow zone, temperatures calculated from this geothermometer (217–292°C), together with fluid inclusion data of Valori et al. [Eur. J. Mineral. 4, 907–919 (1992)], and computed saturation indices of alteration minerals, indicate thermal stability or slight heating. On the other hand, evidence of a significant cooling process (up to 171°C) in the outflow zone is provided by the comparison between fluid inclusion homogenization temperature (240–326°C) and in-hole temperature (155–250°C). The apparent salinities (0.8–2.3 wt% NaCl eq.) of the fluid inclusions are generally higher than the salinity of the present reservoir fluid (0.29–0.36 wt% NaCl eq.). Clay minerals (illite, smectite, Ill/S mixed layers, vermiculite and chloritic intergrades) generally occur at temperatures consistent with their stability fields.  相似文献   

13.
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350–400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97°C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8–10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are 180°C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are 310°C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238°C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300°C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150–190°C) reservoir with a large natural discharge that feeds the Colmenares hot springs.  相似文献   

14.
A fluid inclusion study of the hydrothermal minerals in two breccias from two wells in the Bagnore geothermal field (Italy) has provided information on the evolution of the fluids, and has also demonstrated that fluid inclusions can be utilized as geothermometers in this geothermal field. Both breccias come from reservoir zones: one (Bagnore 3bis (Bg 3bis)) was cored at a depth of 3111 m below ground level (b.g.l.), whereas the other (Bagnore 22 (Bg 22)) was ejected during a blow-out, probably from a fractured zone present between 2200 and 2300 m b.g.l. The hydrothermal cement of the breccias is mostly made up of quartz, K-feldspar, Na-rich plagioclase, calcite, chlorite and illite. Fluid inclusion studies were carried out on quartz (Bg 3bis and Bg 22 breccias) and adularia (Bg 22 breccia). Three types of fluid inclusions were recognized in the Bg 3bis breccia. Type I (liquid-rich) inclusions trapped an aqueous fluid with a CO2 concentration (1.7–2.7 mol/kg) that is significantly higher than present-day fluids (0.5 mol/kg). Type II (liquid-rich) inclusions formed after type I, and trapped a fluid with less CO2 (0.6–1.0 mol/kg). Type III (vapor-rich) coexist with type I inclusions, and record an early fluid circulation under boiling conditions. The decrease of the CO2 (and total gas) concentrations from type I inclusions to type II inclusions, and on to present-day conditions can be related to boiling with gas loss and/or mixing. Only one type of fluid inclusion (type II), with moderate CO2 concentration (0.7–0.3 mol/kg), was found in the Bg 22 breccia. Boiling and/or mixing explain the variation of the CO2 content in the Bg 22 reservoir fluid from inclusion formation to modern CO2 concentration (0.3 mol/kg). The absence of any type I inclusions in Bg 22 breccia may be related to non-uniform CO2 concentrations in different parts of the field. Present-day temperatures (295±10 °C for Bg 3bis and 320±10 °C for Bg 22) are close or equal to fluid inclusion average total homogenization temperatures (around 290 °C for Bg 3bis and 320 °C for Bg 22), suggesting that fluid inclusions can be useful for estimating local temperatures when direct measurements are not available or dubious.  相似文献   

15.
Geothermal waters from the Tertiary aquifers located at 1000–3000 m beneath Xi’an city, Shaanxi Province, China, show unique isotopic composition as compared to local groundwaters from shallower Quaternary aquifers. Positive oxygen shifts of as much as 8‰ VSMOW are observed, while the corresponding δ2H values remain essentially constant at about −80‰ VSMOW, which is significantly different from those of waters in the Quaternary aquifers with a mean δ2H value of −60‰ VSMOW. The strong 18O shift is a result of isotope exchange between geothermal water and carbonate minerals such as calcite over a residence time of several thousand years up to 30,000 years, based on 14C dating. A comparison of the isotopic composition of geothermal waters with neighbouring groundwater units on both sides of the Guanzhong Basin indicates that the geothermal reservoirs are recharged by rain that falls on the northern slope of the Qinling Mountains, south of the Xi’an geothermal field, but not from the North Mountains to the north of the field. Based on chemical geothermometers the highest temperature estimated for the Tertiary aquifers of the Xi’an area is around 130 °C.  相似文献   

16.
The Dakongbeng geothermal area, whose hot springs reach a temperature of up to 96°C, has been considered one of the potential high-temperature hydrothermal systems in south-west China. The concentration of dominant cations and anions indicates an NaHCO3 type of thermal water, whose major constituents in decreasing order are: Na>K>Ca>Mg, HCO3>SiO2>Cl>SO4. On the basis of the silica geothermometer, cation geothermometers, gas geothermometer and activity diagram, the reservoir temperature is estimated at about 200°C. All the thermal waters have originated from meteoric water of a higher altitude that circulated as ground water at considerable depth along faults. The stability of their contents of Cl, SiO2, δD, δ18O and of the Cl/B, Na/Li ratios suggests that the main heat loss process is through steam loss. The geochemistry of the initial liquid has been estimated by single and continuous steam loss. On the basis of its geologic and geographic setting, the Dakongbeng geothermal area appears to belong to the Himalayan geothermal belt and is thus regarded as an area of interest for further study.  相似文献   

17.
This study addresses the hydrogeochemistry of thermal springs that emerge from the Asmari limestone in a gorge at Changal Anticline in the vicinity of the Salman-Farsi dam. The Changal thermal springs vary in temperature between 28 and 40 °C. Chemical and isotopic compositions of the thermal waters suggest two distinct hydrogeological systems: a deep, moderate-temperature (∼40 °C) geothermal system recharged by deeply circulating meteoric waters, and a shallow cold aquifer system related to local groundwater. The source geothermal fluid temperature was calculated using different geothermometers and mineral saturation indexes. Based on chemical and isotopic data, it is hypothesized that: (1) mixing occurs between the ascending geothermal water and shallow cold water; (2) the resulting thermal waters reaching surface are a mixture of 80% local, shallow meteoric water and 20% geothermal water; and (3) the circulation depth of the meteoric water is about 1500 m. The thermal reservoir temperature is estimated to be between 70 and 80 °C according to calculations using different geothermometers and computation of saturation indices for different solid phases.  相似文献   

18.
The Tengchong volcanic geothermal area is one of the areas in China which has powerful geothermal energy potential. The chemical compositions of the thermal waters discharged in this area were studied to obtain information on boiling and mixing relationships and average reservoir temperatures. Then a conceptual model of the Tengchong volcanic geothermal area was formulated. Hydrothermal areas have reservoir temperatures ranging from 90 to 150°C; such temperatures can be found in up to 60% of the 58 hydrothermal areas. Five hydrothermal areas have high temperatures, with an average reservoir temperature of more than 150°C, and occupy less than 10% of the total. The Hot Sea geothermal field is one of the five high temperature hydrothermal areas where a more detailed investigation was made.  相似文献   

19.
The volcano Chichontepeque (San Vicente) is one of the nine recent volcanoes making up the El Salvador sector of the WNW-ESE-trending active Central American volcanic belt. Thermal activity is at present reduced to a few thermal springs and fumaroles. The most important manifestations (Agua Agria and Los Infernillos Ciegos) are boiling springs and fumaroles located on the northern slope of the volcano (850 m a.s.l.) along two radial faults. The chloride acid waters of the Los Infernillos area are partly fed by a deep hydrothermal aquifer (crossed at 1100–1300 m by a geothermal exploration well), which finds a preferential path to the surface through the radial fault system. C02 is the most important gas (>90%) of the Los Infernillos Ciegos and Agua Agria fumaroles. Part of the Los Infernillos gases may also come from a deeper, hotter source, given their high HCl/Stot. ratio and their more reducing conditions. The application of geothermometric and geobarometric methods to the gases and thermal waters suggests that both thermal areas are linked to the identified 1100–1300 m reservoir, whose temperature (250°C), lateral extension and chemical composition, as resulting from this study, are of interest for industrial development.  相似文献   

20.
The Beppu geothermal system is centred beneath the late Quaternary volcanoes of Tsurumi and Garandake at the northern end of the Ryukyu volcanic arc. The deep fluid has a temperature of at least 250–300°C, and an inferred chloride concentration of 1400–1600 mg/kg. Apart from fumarolic areas near the summits of the two volcanoes, most thermal activity occurs at low elevation along the two main outflow paths towards the coast. The hot spring waters of downtown Beppu have originated from outflow along the Asamigawa Fault, with their chemistry indicating predominantly dilution of the deep fluid by groundwater. The second outflow zone towards the hot spring area of downtown Kamegawa coincides with a ridge of lavas. Here boiling, steam loss, and subsequent mixing with steam-heated groundwaters have significantly modified both the deep fluid and host rocks. The area of the geothermal system above 200°C is at least 15 km2 at sea level, and the total natural heat output is inferred to be at least 250 MW. Most of this heat output occurs as subsurface hot water outflows towards the coast due to the 1300 m of topographic relief across the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号