首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of Listeria monocytogenes was evaluated with ready-to-eat uncured turkey and cured pork-beef bologna with combinations of benzoate, propionate, and sorbate. Three treatments of each product type were formulated to include control with no antimycotic agents; a combination of 0.05% sodium benzoate and 0.05% sodium propionate; and a combination of 0.05% sodium benzoate and 0.05% potassium sorbate. Ingredients were mixed, stuffed into fibrous, moisture-impermeable casings, cooked to an internal temperature of 73.9 degrees C, chilled, and sliced. The final product was surface inoculated with L. monocytogenes (4 log CFU per package), vacuum packaged, and stored at 4 degrees C for 13 weeks. The antimycotic addition to the second and third uncured turkey treatments initially slowed the pathogen growth rate compared with the control, but populations of L. monocytogenes increased 5 log or more by 6 weeks. In contrast, the addition of antimycotic combinations in the cured bologna prevented growth of L. monocytogenes during the 13-week storage period at 4 degrees C, compared with a more than 3.5-log increase in listerial populations in the control bologna, to which no antimicrobial agents had been added. These data suggest that low concentrations of antimycotic agents can prevent L. monocytogenes growth in certain ready-to-eat meats. Additional research is needed to define the levels needed to prevent growth of L. monocytogenes in high-moisture cured and uncured ready-to-eat meat and poultry and for gaining governmental approval for their use in such formulations.  相似文献   

2.
The ability of selected generally recognized as safe (GRAS) chemical preservatives to reduce populations or inhibit growth of Listeria monocytogenes on chicken luncheon meat was evaluated. Slices of luncheon meat were treated by evenly spraying onto their surfaces 0.2 ml of a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at one of three different concentrations (15, 20, or 25% [wt/vol]). Each slice was then surface inoculated with a five-strain mixture of 10(5) CFU of L. monocytogenes per ml, held at 4, 13, or 22 degrees C, and assayed for L. monocytogenes immediately after inoculation and at 3, 7, 10, and 14 days of storage. Initial reductions of L. monocytogenes populations ranged from 0.78 to 1.32 log10 CFU g(-1) at day 0 for sodium benzoate- or sodium diacetate-treated meat, whereas reductions for the sodium propionate or potassium sorbate treatments were only 0.14 to 0.36 log10 CFU g(-1). After 14 days of storage at 4 degrees C, L. monocytogenes populations on all treated slices were 1.5 to 3 log10 CFU g(-1) less than on the untreated slices. At 13 degrees C and after 14 days of storage, L. monocytogenes populations were 3.5 and 5.2 log10 CFU g(-1) less on luncheon meat slices treated with 25% sodium benzoate or 25% sodium diacetate, respectively, and ca. 2 log10 CFU g(-1) less when treated with 25% sodium propionate or 25% potassium sorbate than on untreated control slices. Only sodium diacetate was highly inhibitory to L. monocytogenes on meat slices held at 22 degrees C for 7 days or longer. Untreated luncheon meat held at 22 degrees C was visibly spoiled within 10 days, whereas there was no evidence of visible spoilage on any treated luncheon meat at 14 days of storage.  相似文献   

3.
The effect of sodium benzoate (0.08 to 0.25%) in combination with different concentrations of sodium diacetate (0.05 to 0.15%) and NaClI (0.8 to 2%) and different finished product moisture (55 to 75%) on the growth of Listeria monocytogenes in ready-to-eat meat products was evaluated using a central composite design over 18 weeks of storage at 4 degrees C. The effects of these factors on time to growth were analyzed using a time-to-failure regression method. All main effects were significant except product moisture, which was significant when included in the two- and three-way interactions (P < 0.05). Sodium benzoate was more effective (lengthening time to growth) when used with increasing concentrations of sodium diacetate and salt and decreasing finished product moisture. The model indicated that low-moisture products, e.g., bologna or wieners, could have time-to-growth values longer than 18 weeks if they were formulated with 0.1% sodium benzoate and 0.1% sodium diacetate. Time to growth in high-moisture products, e.g., ham or cured turkey breast at 75% moisture, was predicted to be much shorter for the same basic formulation (0.1% sodium benzoate and 0.1% sodium diacetate). Consequently, high-moisture ready-to-eat products in which sodium benzoate is limited to 0.1% (current standard for generally recognized as safe) may need additional ingredients to effectively inhibit growth of L. monocytogenes.  相似文献   

4.
The inhibition of Listeria monocytogenes by sodium lactate and sodium diacetate was evaluated for wieners containing pork, turkey, and beef and for cooked bratwurst containing beef and pork. Both products were supplied by commercial manufacturers. Treated products were surface-inoculated with 10(5) CFU of L. monocytogenes per package and vacuum-packed in gas-impermeable pouches. Wieners were stored for 60 days at 4.5 degrees C, and bratwurst were stored for 84 days at 3 and 7degrees C. A surface treatment that consisted of dipping wieners into solutions containing < or = 6% lactate and < or = 3% diacetate for 5 s did not delay pathogen growth compared with that for untreated wieners. In additional trials, the antilisterial activity of lactate and diacetate in wiener and bratwurst formulations was evaluated. Lactate levels ranged from 1.32 to 3.4%, and diacetate was evaluated at 0.1 and 0.25%. The growth of L. monocytogenes was delayed for 4 and 12 weeks at 7 and 3 degrees C, respectively, on uncured, unsmoked bratwurst formulated with 3.4% lactate/0.1% diacetate, compared with 1 and 2 weeks, respectively, for the formulation containing 2% lactate. L. monocytogenes grew by > or = 1 log unit after 4 weeks' storage at 3 or 7 degrees C on cured, smoked bratwurst without lactate or diacetate, but growth was inhibited for 12 weeks on cured, smoked bratwurst formulated with 3.4% lactate and 0.1% diacetate. Sodium lactate levels of > or = 3% and combinations of > or = 1% lactate plus > or = 0.1% diacetate prevented listerial growth on wieners stored for 60 days at 4.5 degrees C. These results indicate that dipping wieners in lactate-diacetate solutions is not an efficient way to apply these antimicrobial agents to wieners. However, the inclusion of combinations of sodium lactate and sodium diacetate in wiener or bratwurst formulations inhibits the growth of L monocytogenes at < or = 7 degrees C, and an additional margin of safety was observed for products that are cured and smoked.  相似文献   

5.
Generally-recognized-as-safe chemicals applied to the surfaces of turkey frankfurters were evaluated for their ability to reduce populations of or inhibit the growth of Listeria monocytogenes. Frankfurters were treated prior to inoculation by dipping for 1 min in a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at three different concentrations (15, 20, and 25% [wt/vol]), with < 0.3% of the preservative being present for each frankfurter. Subsequently, 0.1 ml of a five-strain mixture of L. monocytogenes (10(6) CFU/ml) was used to surface inoculate each frankfurter separately in a sterile stomacher bag. Inoculated frankfurter bags were held at 4, 13, and 22 degrees C, and L. monocytogenes cells were enumerated at 0, 3, 7, 10, and 14 days of storage. The results of this study revealed that at all three concentrations of all four preservatives, the initial populations of L. monocytogenes decreased immediately by 1 to 2 log10 CFU/g. After 14 days of storage at 4 degrees C, L. monocytogenes counts for all treated frankfurters were 3 to 4 log10 CFU/g less than those for the untreated frankfurters. After 14 days of storage at 13 degrees C, L. monocytogenes counts for frankfurters treated with 25% sodium benzoate or 25% sodium diacetate were 3.5 to 4.5 log10 CFU/g less than those for untreated frankfurters, and those for frankfurters treated with 25% sodium propionate or 25% potassium sorbate were 2.5 log10 CFU/g less than those for untreated frankfurters. In all instances, the degree of growth inhibition was directly proportional to the concentration of the preservative. Only frankfurters treated with 25% sodium diacetate or sodium benzoate were significantly inhibitory to L. monocytogenes when held at 22 degrees C for 7 days or longer. Interestingly, the untreated frankfurters held at 22 degrees C were spoiled within 7 days, with copious slime formation, whereas there was no evidence of slime on any treated frankfurters after 14 days of storage.  相似文献   

6.
Cooked cured ham products were produced according to a standard recipe for cooked ham with various levels of sodium lactate, sodium diacetate or buffered sodium citrate. They were compared with a reference ham product with respect to sensory quality and growth of Lactobacillus curvatus and Listeria monocytogenes. For this, a part of the products was sensory analysed directly after preparation. Another part of the cooked ham products was minced and homogeneously inoculated with L. curvatus (10(4)/g) and L. monocytogenes (10(2)/g) and filled in 60-g plastic pouches. After vacuum packaging, the pouches were stored at 4 degrees C for up to 40 days. Between the different ham compositions, only minor differences were found for appearance, internal colour, structure and firmness. The addition of 0.2% Na-diacetate had a negative effect on the odour and taste of the ham product. The addition of 2.5% to 3.3% Na-lactate inhibited the growth of L. curvatus compared to the reference, while 0.1% and 0.2% Na-diacetate did not. L. monocytogenes was best inhibited by the addition of Na-lactate but also by the addition of 0.2% Na-diacetate. On the other hand, the growth of L. monocytogenes was stimulated by the addition of 1% buffered Na-citrate.  相似文献   

7.
Surface pasteurization was examined in combination with low-phenolic antimicrobial extracts derived from liquid smoke to inhibit and prevent the growth of Listeria monocytogenes during the shelf life of ready-to-eat meats. In preliminary trials with retail frankfurters, one smoke derivative (2-min dip) produced a 0.3-log reduction of L. monocytogenes and a 1-min in-bag pasteurization (73.9 degrees C) produced a 2.9-log reduction, whereas a combination of the two treatments produced a 5.3-log reduction that resulted in no detectable Listeria by week 3 under accelerated shelf-life conditions (10 degrees C). In trials with frankfurters manufactured without lactate or diacetate that were treated with a shortened 1-s dip, this smoke extract and one with reduced smoke flavor and color both produced a > 4.5-log reduction of L. monocytogenes on frankfurters when heated at 73.9 degrees C for 1 min, with no recoverable Listeria detected for 10 weeks when stored at 6.1 degrees C. When deli turkey breast chubs manufactured without lactate, diacetate, or nitrite were treated with a 1-s dip in combination with radiant-heat pasteurization (270 degrees C), growth of L. monocytogenes was retarded but not prevented. However, in a similar study in which smoke extract treatment of deli turkey breast was combined with in-bag postpackage pasteurization (water submersion at 93.3 degrees C), a 60-, 45-, or even 30-s heat treatment resulted in a 2- to 3-log reduction of L. monocytogenes, with no growth on the meat during 10 weeks of storage at 6.1 degrees C. These findings indicate that reduced-acid low-phenolic antimicrobial liquid smoke derivatives combined with surface pasteurization are capable of reducing or preventing growth of L. monocytogenes to meet the criteria for the U.S. Department of Agriculture Food Safety and Inspection Service Alternative 1 process for ready-to-eat deli meat products manufactured without lactate or diacetate.  相似文献   

8.
Ye M  Neetoo H  Chen H 《Food microbiology》2008,25(2):260-268
Contamination of ready-to-eat (RTE) meat products such as ham steaks with Listeria monocytogenes has been a concern for the meat processing industry. The objective of this study was to evaluate the antilisterial efficacy of chitosan-coated plastic films alone or incorporating five generally recognized as safe (GRAS) antimicrobials. Effect of chitosan-coated plastic film on the growth of L. monocytogenes was first investigated in an aqueous system of culture medium broth and chitosan-coated films were able to inhibit the growth of L. monocytogenes in a concentration-dependent manner. However, chitosan-coated plastic films were not able to control the growth of L. monocytogenes on ham steaks. Therefore, five GRAS antimicrobials were subsequently incorporated into chitosan-coated plastic films to enhance their antilisterial effectiveness. Ham steaks were surface-inoculated with a five-strain cocktail of L. monocytogenes and then packaged in chitosan-coated plastic films containing 500 IU/cm(2) of nisin, 0.01 g/cm(2) of sodium lactate (SL), 0.0025 g/cm(2) of sodium diacetate, 0.003 g/cm(2) of potassium sorbate (PB), or 0.001 g/cm(2) of sodium benzoate (SB). The samples were stored at room temperature (ca. 20 degrees C) for 10 days. Incorporating antimicrobials into chitosan-coated plastic films slowed down or inhibited the growth of L. monocytogenes. The chitosan-coated plastic film containing SL was the most effective antimicrobial film and its efficacy against L. monocytogenes on ham steaks was evaluated during 12-week storage at 4 degrees C. The film showed excellent long-term antilisterial effect with the counts of L. monocytogenes being slightly lower than the initial inoculum. Chitosan-coated plastic films containing 0.001 g/cm(2) of SL have a potential to be used on ham steaks to control L. monocytogenes.  相似文献   

9.
The effect of pH modification and preservative addition in apple cider on the heat resistance of Escherichia coli O157:H7 was investigated. E. coli O157:H7 and various amounts of potassium sorbate (0 to 0.2%), sodium benzoate (0 to 0.2%), and malic acid (0 to 1%) were added to apple cider. Thermal inactivation experiments were performed at 47, 50, and 53 degrees C, and D- and z-values were calculated. In apple cider without additives, the D-value at 50 degrees C (D50) was about 65 min, but addition of preservatives and malic acid significantly (P < 0.01) decreased D-values. D50-values decreased to 13.9 min in cider with 0.5% malic acid, 13.2 min with 0.1% sorbate, and 7.0 min with 0.1% benzoate added. Addition of both sorbate and malic acid had similar effects as either one alone, thus additive effects were not present. However, addition of both 0.2% benzoate and 1% malic acid did show additive effects, lowering D50 to 0.3 min. Addition of all three components (0.2% sorbate, 0.2% benzoate, and 1% malic acid) resulted in a D50 = 18 s. The z-value of cider without additives was about 6 degrees C, whereas z-values of cider containing malic acid, benzoate, and/or sorbate ranged from about 6 degrees C to 26 degrees C. This increase may result in a longer 5-log reduction time at higher temperatures (i.e., 70 degrees C) in cider with benzoate as compared to cider without additives.  相似文献   

10.
Postprocessing contamination of cured meats with Listeria monocytogenes has become a major concern for the meat processing industry and an important food safety issue. This study evaluated aqueous dipping solutions of organic acids (2.5 or 5% lactic or acetic acid) or salts (2.5 or 5% sodium acetate or sodium diacetate, 5 or 10% sodium lactate, 5% potassium sorbate or potassium benzoate) to control L. monocytogenes on sliced, vacuum-packaged bologna stored at 4 degrees C for up to 120 days. Organic acids and salts were applied by immersing (1 min) in each solution inoculated (10(2) to 10(3) CFU/cm2) slices of bologna before vacuum packaging. Growth of L. monocytogenes (PALCAM agar) on inoculated bologna slices without treatment exceeded 7 log CFU/cm2 (P < 0.05) at 20 days of storage. No significant (P > 0.05) increase in L. monocytogenes populations occurred on bologna slices treated with 2.5 or 5% acetic acid, 5% sodium diacetate, or 5% potassium benzoate from day 0 to 120. Products treated with 5% potassium sorbate and 5% lactic acid were stored for 50 and 90 days, respectively, before a significant (P < 0.05) increase in L. monocytogenes occurred. All other treatments permitted growth of the pathogen at earlier days of storage, with sodium lactate (5 or 10%) permitting growth within 20 to 35 days. Extent of bacterial growth on trypticase soy agar plus 0.6% yeast extract (TSAYE) was similar to that on PALCAM, indicating that the major part of total bacteria grown on TSAYE agar plates incubated at 30 degrees C was L. monocytogenes. Further studies are needed to evaluate organic acids and salts as dipping solutions at abusive temperatures of retail storage, to optimize their concentrations in terms of product sensory quality, and to evaluate their effects against various other types of microorganisms and on product shelf life. In addition, technologies for the commercial application of postprocessing antimicrobial solutions in meat plants need to be developed.  相似文献   

11.
A five-strain Listeria monocytogenes culture was inoculated onto six different types of ready-to-eat (RTE) meats (frankfurters, ham, roast beef, bologna, smoked turkey with lactate, and smoked turkey without lactate). The meats were vacuum packed and stored at 4 degrees C for 24 h prior to irradiation. Populations of L. monocytogenes were recovered by surface plating on nonselective and selective media. The margins of safety studied include 3-log (3D) and 5-log (5D) reduction of pathogenic bacteria to achieve an optimal level of reduction while retaining organoleptic qualities of the meats. A 3-log reduction of L. monocytogenes was obtained at 1.5 kGy when nonselective plating medium was used. The dosages for 3-log reduction were 1.5 kGy for bologna, roast beef, and both types of turkey and 2.0 kGy for frankfurters and ham on the basis of use of selective medium. The D10-values ranged from 0.42 to 0.44 kGy. A 5-log reduction of L. monocytogenes was obtained at 2.5 kGy with nonselective medium. With selective medium, the dosages were 2.5 kGy for bologna, roast beef, and both types of turkey and 3.0 kGy for frankfurters and ham. Survival of L. monocytogenes in the same RTE meat types after irradiation was also studied. Meats were inoculated with 5 log L. monocytogenes per g and irradiated at doses of 2.0 and 4.0 kGy. Recovery of the surviving organisms was observed during storage at temperatures of 4 and 10 degrees C for 12 weeks. Preliminary results showed no growth in meats irradiated at 4.0 kGy. Survivors were observed for irradiated meats at 2.0 kGy stored at 10 degrees C after the second week. No growth was observed in samples irradiated at 2.0 kGy stored at 4 degrees C until the fifth week.  相似文献   

12.
Contamination of ready-to-eat meat products such as beef franks with Listeria monocytogenes has become a major concern for the meat processing industry and an important food safety issue. The objective of this study was to determine the effectiveness of combinations of antimicrobials as aqueous dipping solutions to control L. monocytogenes on vacuum-packaged beef franks stored at 4 degrees C for 3 weeks. Commercial beef franks were dipped for 5 min in three antimicrobial solutions: pediocin (6,000 AU), 3% sodium diacetate and 6% sodium lactate combined, and a combination of the three antimicrobials. Samples were then inoculated with 10(7) CFU/g of either four L. monocytogenes strains individually or a cocktail of the four strains, vacuum packaged, and stored at 4 degrees C for 3 weeks. Sampling was carried out at day 0 and after 2 and 3 weeks of storage. Individual strains, as well as the cocktail, exhibited different responses to the antimicrobial treatments. After 2 and 3 weeks of storage at 4 degrees C, pediocin-treated beef franks showed a less than 1-log reduction for all bacterial strains. Samples treated with the sodium diacetate-sodium lactate combination showed about a 1-log reduction after 2 weeks of storage for all strains and between a 1- and 2-log reduction after 3 weeks of storage, depending on the bacterial strain. When the three antimicrobials were combined, reductions ranged between 1 and 1.5 log units and 1.5 to 2.5 log units after 2 and 3 weeks of storage, respectively, at 4 degrees C. These results indicate that the use of combined antimicrobial solutions for dipping treatments is more effective at inhibiting L. monocytogenes than treatments using antimicrobials such as pediocin separately.  相似文献   

13.
Refrigerated sweet potato puree is a convenient form of sweet potato that can be used as an ingredient in formulated foods. The microbiology of refrigerated sweet potato puree during storage for up to 5 weeks was evaluated. Because the puree was made by comminuting steam-cooked sweet potatoes before refrigeration, no naturally occurring vegetative bacterial cells were detected during a 4-week period of refrigerated storage at 4 degrees C. However, if postprocessing microbial contamination of the puree were to occur, contaminating microorganisms such as Listeria monocytogenes could grow during refrigerated storage. The effects of acidification or the addition of potassium sorbate and sodium benzoate on a population of L. monocytogenes inoculated into refrigerated (4 degrees C) sweet potato puree were determined. Inoculation of the refrigerated puree with L. monocytogenes at 10(6) CFU/ml resulted in a 3-log increase after 3 weeks storage of nonsupplemented puree. Supplementation of the sweet potato puree with 0.06% (wt/vol) sorbic acid or benzoic acid plus mild acidification of the sweet potato puree with citric acid to pH 4.2 prevented growth of L. monocytogenes during storage at 4 degrees C.  相似文献   

14.
The effects of concentration of NaCl (0.5 to 12.5%), methyl paraben (0.0 to 0.2%), sodium propionate (0.3%), sodium benzoate (0.1%), potassium sorbate (0.3%), pH (>5.9) temperature (4 to 30°C), storage time (up to 58 d) and inoculum (>105 to >10−2 per ml) on the log10 probability percentage of one cell of Listeria spp. to initiate growth in a broth system were evaluated in a factorial design study. At pH 5.96 and temperature ranging from 4 to 30°C the concentrations of sodium propionate, potassium sorbate, and sodium benzoate examined allowed growth of L. monocytogenes with lag phases at 4°C of 18, 27 and 21 days, respectively. For 0.1 and 0.2% methyl paraben growth of all Listeria spp. was initiated at 8°C and 30°C, respectively. At pH 6, concentration of 12% NaCl supported the growth of L. monocytogenes at 8 to 30°C, whereas 12.5% inhibited all Listeria species. Four regression equations were derived relating probability of growth initiation to temperature, concentrations of NaCl and preservatives storage time, and Listeria species specific effects. From these equations, the number of cells needed for growth initiation can be calculated. The impact of this type of quantitative study and its possible application on the development of microbial standards for foods is discussed.  相似文献   

15.
The growth variability of three Listeria monocytogenes ribotypes in ready-to-eat (RTE) sliced uncured turkey breast and cured ham was studied under storage conditions that RTE foods are likely to encounter. Three product treatments studied were: (1) a control; (2) a formulation subjected to high pressure processing to reduce initial microbial load (HPP); (3) a formulation containing 2.0% potassium lactate and 0.2% sodium diacetate (PL/SD). After separate inoculation with individual L. monocytogenes ribotypes and packaging each treatment under air and vacuum, the packages were stored at 4, 8, or 12 degrees C and the counts of L. monocytogenes and psychrotrophic bacteria (PPC) were determined for several weeks. The Baranyi model was used to estimate lag times and growth rates. Significant effect of strain difference was noted in both sliced products (P<0.05). In the absence of antimicrobials (HPP and control), the growth rate (GR) of L. monocytogenes strains increment from 4 to 8 degrees C and from 8 to 12 degrees C was approximately 10 and 2 fold, respectively. The addition of PL/SD was effective in restricting the growth of L. monocytogenes and PPC at 4 degrees C, but at 8 and 12 degrees C significant growth was observed (more than 100-fold increase) (P<0.05). In PL/SD samples, vacuum packaging slowed down the onset and the rate of growth of L. monocytogenes at 12 degrees C in sliced ham and at 8 and 12 degrees C in sliced turkey breast. Generally, the time to increase by 2-logs was greater in control samples than as observed in HPP-treated samples. When antimicrobials were present, the current results showed that L. monocytogenes was able to grow more than 100-fold within the typical quality-based shelf life of 60 to 90 days at 8 and 12 degrees C. The findings of this study should be useful in setting the duration of a safety-based shelf life for RTE sliced meat and poultry foods.  相似文献   

16.
ABSTRACT:  Refrigerated ready-to-eat (RTE) meats contaminated with Listeria monocytogenes were implicated in several listeriosis outbreaks. Lactate and diacetate have been shown to control L. monocytogenes in RTE meats. The objective of this study was to examine and model the effect of lactate (1.0% to 4.2%) and diacetate (0.05% to 0.2%) in ground ham on the lag phase duration (LPD, h) and growth rate (GR, log CFU/h) of L. monocytogenes at a range of temperatures (0 to 45 °C). A 6-strain mixture of L. monocytogenes was inoculated into ground ham containing lactate and diacetate, and stored at various temperatures. The LPD and GR of L. monocytogenes in ham as affected by lactate, diacetate, and storage temperature were analyzed and accurately represented with mathematical equations. Resulting LPD and GR equations for storage temperatures within the range of 0 to 36 °C significantly represented the experimental data with a regression coefficient of 0.97 and 0.96, respectively. Significant factors ( P < 0.05) that affected the LPD were temperature, lactate, diacetate, and the interactions of all three, whereas only temperature and the interactions between temperature and lactate and diacetate had a significant effect on GR. At suboptimal growth temperatures (≤12 °C) the increase of lactate and diacetate concentrations, individually or in combination, extended the LPD. The effect of higher concentrations of both additives on reducing the GR was observed only at temperatures that were more suitable for growth of L. monocytogenes , that is, 15 to 35 °C. These data may be used to assist in determining concentrations of lactate and diacetate in cooked ham products to control the growth of L. monocytogenes over a wide range of temperatures during manufacturing, distribution, and storage.  相似文献   

17.
The effects of selected food-grade antimicrobial agents at decreasing the number of pathogenic bacteria on fresh beef were determined. Beef cubes inoculated with Escherichia coli O157:H7, Listeria monocytogenes, or Staphylococcus aureus were sprayed with 0.5% cetylpyridinium chloride (CPC), 0.12% acidified sodium chlorite (ASC), 0.1% potassium sorbate (PS), or an equal mix of any two solutions. The beef samples were placed on absorbent tray pads sprayed with each single or mixed solution, wrapped with polyvinyl chloride film, heat sealed, and stored at 4 degrees C for 2 weeks. Surface sanitization using CPC, ASC, or an equal mix of these two agents effectively reduced microbial numbers on the beef during storage. At day 0, ASC and the CPC-ASC mix reduced the number of E. coli O157:H7 by 2.50 and 1.58 log CFU/cm2, respectively. CPC demonstrated a 3.25-log reduction of L. monocytogenes and a 4.70-log reduction of S. aureus at 14 days. The CPC-PS mix reduced E. coli O157:H7 numbers by 1.46, L. monocytogenes by 2.95, and S. aureus by 4.41 log CFU/cm2 at 14 days. PS alone and the mixed solutions, CPC-ASC, CPC-PS, or ASC-PS, were not as effective as ASC or CPC alone. To effectively reduce E. coli O157:H7, L. monocytogenes, or S. aureus numbers, higher (> 0.1%) concentrations of PS were necessary. Loss of redness and light color of beef surfaces consistently coincided with decreases in pH for ASC-treated beef samples.  相似文献   

18.
The antimicrobial activities of sodium lactate (SL) and sodium acetate (SA) are well documented, but there is limited information on the effect of their combination or of the combination of SL and sodium diacetate (SDA) on survival and growth of Listeria monocytogenes and salmonellae in meat. Effects of SL (1.8 and 2.5%), SDA (0.1 and 0.2%), or SA (0.2%) and their combinations on the behavior of L monocytogenes and Salmonella enterica serovar Enteritidis were investigated in sterile comminuted beef (pH 6.3, 79% moisture) during storage at 5 and 10 degrees C. Although L. monocytogenes grew faster than Salmonella Enteritidis in control samples at 10 degrees C, numbers of both pathogens increased from 3.5 to approximately 8.0 log CFU/g after 20 days. SL (1.8%) decreased the growth rate of both L. monocytogenes and Salmonella Enteritidis. SDA (0.2%) was more effective than SL in decreasing the growth rate of L monocytogenes, and it caused a more than 1 log CFU/g decline in initial numbers of Salmonella Enteritidis during storage for 25 days at 10 degrees C. Synergy was observed by combinations of SL and SDA. Combinations of 2.5% SL and 0.2% SDA were bacteriostatic to L. monocytogenes and bactericidal to Salmonella Enteritidis after 20 days at 10 degrees C. At 5 degrees C, a listeriostatic effect was produced by 1.8% SL + 0.1% SDA, whereas numbers of Salmonella Enteritidis were less than 10 cells/g after refrigeration for 30 days. Although SA was consistently and significantly less inhibitory than SDA, its mixtures with SL also demonstrated synergistic activity against both pathogens. Combinations of 2.5% SL and 0.2% SDA can be expected to greatly enhance the safety of refrigerated and temperature-abused ready-to-eat meats.  相似文献   

19.
Sodium diacetate (SD), sodium diacetate plus potassium benzoate (SD-PB), and sodium lactate plus sodium diacetate plus potassium benzoate (SL-SD-PB) were selected for initial effectiveness against Listeria monocytogenes on frankfurters. Treatments were evaluated at -2.2, 1.1, 4.4, 10.0, and 12.8 degrees C for up to 90 days. The compounds were applied as 3 or 6% (total concentration) dipping solutions for surface treatment of the frankfurters. The treated frankfurters were inoculated with a five-strain cocktail of L. monocytogenes (Scott A 4b, H7764 1/2a, H7962 4b, H7762 4b, and H7969 4b) using 1 ml of 10(4) cells for each 90.8-g package of two frankfurters. The maximum population of L. monocytogenes was decreased and generation time and lag phase were increased after surface treatments with 6% SD, 6% SL-SD-PB, 3% SD-PB, and 6% SD-PB solutions at 1.1 degrees C. Surface treatment of frankfurters with SD at 6% was more effective for inhibiting L. monocytogenes growth than were the other treatments. Under the conditions of this study, L. monocytogenes survived in refrigerated storage even in the presence of the additives tested.  相似文献   

20.
In the wake of recent outbreaks associated with Listeria monocytogenes in ready-to-eat foods and an increasing desire for minimally processed foods, there has been a burgeoning interest in the use of natural antimicrobials by the food industry to control this pathogen. The minimum inhibitory concentrations (MICs) of nisin and salts of organic acids (sodium lactate (SL), sodium diacetate (SD), sodium benzoate (SB), and potassium sorbate (PS)) against twelve strains of L. monocytogenes in a TSBYE broth medium at 35 degrees C were determined. The MICs were strain-dependent and fell in the range of 0.00048-0.00190% for nisin, 4.60-5.60% for SL, 0.11-0.22% for SD, 0.25-0.50% for SB and 0.38-0.75% for PS, respectively. The two most antimicrobial-resistant strains were used as a cocktail in the following experiments to represent a worst case scenario. The five antimicrobials alone and in binary combinations were screened for their efficacy against the two-strain cocktail in TSBYE at sub-MIC and sub-legal levels at 35 degrees C. Seven effective antimicrobial treatments were then selected and evaluated for their long-term antilisterial effectiveness in cold-smoked salmon paté and fillets during refrigerated storage (4 degrees C) of 3 and 6 weeks, respectively. The two most effective antimicrobial formulations for smoked salmon paté, 0.25% SD and 2.4% SL/0.125% SD, were able to inhibit the growth of L. monocytogenes during the 3 weeks of storage. Surface application of 2.4% SL/0.125% SD was the most effective treatment for smoked salmon fillets which inhibited the growth of L. monocytogenes for 4 weeks. These antimicrobial treatments could be used by the smoked salmon industry in the U.S. and Europe in their efforts to control L. monocytogenes as they are effective against even the most antimicrobial-resistant strains tested in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号