首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The characteristic load method (CLM) can be used to estimate lateral deflections and maximum bending moments in single fixed-head piles under lateral load. However, this approach is limited to cases where the lateral load on the pile top is applied at the ground surface. When the pile top is embedded, as in most piles that are capped, the additional embedment results in an increased lateral resistance. A simple approach to account for embedment effects in the CLM is presented for single fixed-head piles. In practice, fixed-head piles are more typically used in groups where the response of an individual pile can be influenced through the adjacent soil by the response of other nearby piles. This pile–soil–pile interaction results in larger deflections and moments in pile groups for the same load per pile compared to single piles. A simplified procedure to estimate group deflections and moments was also developed based on the p-multiplier approach. Group amplification factors are introduced to amplify the single pile deflection and bending moment to reflect pile–soil–pile interaction. The resulting approach lends itself well to simple spreadsheet computations and provides good agreement with other generally accepted analytical tools and with values measured in published lateral load tests on groups of fixed-head piles.  相似文献   

2.
Centrifuge Model Study of Laterally Loaded Pile Groups in Clay   总被引:3,自引:0,他引:3  
A series of centrifuge model tests has been conducted to examine the behavior of laterally loaded pile groups in normally consolidated and overconsolidated kaolin clay. The pile groups have a symmetrical plan layout consisting of 2, 2×2, 2×3, 3×3, and 4×4 piles with a center-to-center spacing of three or five times the pile width. The piles are connected by a solid aluminum pile cap placed just above the ground level. The pile load test results are expressed in terms of lateral load–pile head displacement response of the pile group, load experienced by individual piles in the group, and bending moment profile along individual pile shafts. It is established that the pile group efficiency reduces significantly with increasing number of piles in a group. The tests also reveal the shadowing effect phenomenon in which the front piles experience larger load and bending moment than that of the trailing piles. The shadowing effect is most significant for the lead row piles and considerably less significant for subsequent rows of trailing piles. The approach adopted by many researchers of taking the average performance of piles in the same row is found to be inappropriate for the middle rows, of piles for large pile groups as the outer piles in the row carry significantly more load and experience considerably higher bending moment than those of the inner piles.  相似文献   

3.
Group Interaction Effects on Laterally Loaded Piles in Clay   总被引:3,自引:0,他引:3  
This paper presents the results of static lateral load tests carried out on 1×2, 2×2, 1×4, and 3×3 model pile groups embedded in soft clay. Tests were carried out on piles with length to diameter ratios of 15, 30, and 40 and three to nine pile diameter spacing. The effects of pile spacing, number of piles, embedment length, and configuration on pile-group interaction were investigated. Group efficiency, critical spacing, and p multipliers were evaluated from the experimental study. The experimental results have been compared with those obtained from the program GROUP. It has been found that the lateral capacity of piles in 3×3 group at three diameter spacing is about 40% less than that of the single pile. Group interaction causes 20% increase in the maximum bending moment in piles of the groups with three diameter spacing in comparison to the single pile. Results indicate substantial difference in p multipliers of the corresponding rows of the linear and square pile groups. The predicted field group behavior is in good agreement with the actual field test results reported in the literature.  相似文献   

4.
In this research, centrifuge model pile-load tests were carried out to failure to investigate the behavior of large-diameter bored pile groups with defects. The model piles represented cast-in-place concrete piles 2.0?m in diameter and 15?m in length. Two series of static loading tests were performed. The first series of tests simulated the performance of a pile founded on rock and a pile with a soft toe. The second series of tests simulated the performance of three 2×2 pile groups: One reference group without defects, one group containing soft toes, and one group with two shorter piles not founded on rock. The presence of soft toes and shorter piles in the defective pile groups considerably reduced the pile group stiffness and capacity. As the defective piles were less stiff than the piles without defects, the settlements of the individual piles in the two defective pile groups were different. As a result, the applied load was largely shared by the piles without defects, and the defective pile groups tilted significantly. The rotation of the defective pile groups caused large bending moments to develop in the group piles and the pile caps. When the applied load was large, bending failure mechanisms were induced even though the applied load was vertical and concentric. The test results confirm findings from numerical analyses in the literature.  相似文献   

5.
The behavior of bored pile groups in cemented sands was examined by a field testing program at a site in South Surra, Kuwait. The program consisted of axial load tests on single bored piles in tension and compression and compression tests on two pile groups each consisting of five piles. The spacing of the piles in the groups was two- and three-pile diameters. Soil exploration included standard penetration tests, dynamic cone tests, and pressure meter tests. Laboratory tests included basic properties and drained triaxial compression tests. Test results on single piles indicated that 70% of the ultimate load was transmitted in side friction that was uniform along the pile shafts. The calculated pile group efficiencies were 1.22 and 1.93 for a pile spacing of two- and three-pile diameters, respectively. Since settlement usually controls the design of pile groups in sand, the group factor defined herein as the ratio of the settlement of the group to the settlement of a single pile at comparable loads in the elastic range was determined from test results. A comparison between the measured values and calculated values based on a simplified formula was made.  相似文献   

6.
This paper presents results of full-scale lateral load tests of one single pile and three pile groups in Hong Kong. The test piles, which are embedded in superficial deposits and decomposed rocks, are 1.5 m in diameter and approximately 30 m long. The large-diameter bored pile groups consist of one two-pile group at 6 D (D = pile diameter) spacing and one two-pile and one three-pile group at 3 D spacing. This paper aims to investigate the nonlinear response of laterally loaded large-diameter bored pile groups and to study design parameters for large-diameter bored piles associated with the p-y method using a 3 D finite-element program, FLPIER. Predictions using soil parameters based on published correlations and back-analysis of the single-pile load test are compared. It is found that a simple hyperbolic representation of load-deflection curves provides an objective means to determine ultimate lateral load capacity, which is comparable with the calculated values based on Broms' theory. Lateral deflections of bored pile groups predicted using the values of the constant of horizontal subgrade reaction, suggested by Elson and obtained from back-analysis of the single pile load test, are generally in good agreement with the measurements, especially at low loads.  相似文献   

7.
Rotational Restraint of Pile Caps during Lateral Loading   总被引:1,自引:0,他引:1  
A pure fixed-head (zero-rotation) condition at the top of a group of laterally loaded piles is seldom achievable in the field, even when piles are installed in a group that is “rigidly” constrained by a stiff concrete pile cap. Assuming complete fixity during design (zero rotation at the pile head) can result in underestimated values of pile-head deflection, and incorrect estimates of the magnitude and the location of maximum bending moments. A simple and practical approach is presented for estimating the moment restraint that is provided by the pile cap at the top of a pile group. The moment restraint, represented by the rotational restraint coefficient (KMθ), serves as a boundary condition for analyzing groups of laterally loaded piles. Full-scale field tests performed on two pile groups with concrete pile caps show that the proposed method for estimating rotational restraint provides results that are in good agreement with measured field performance.  相似文献   

8.
Centrifuge Modeling of Ship Impact Loads on Bridge Pile Foundations   总被引:1,自引:0,他引:1  
Bridges that cross navigable waterways may be affected by accidental ship impacts. To better characterize ship impact loads on bridge pier structures, a comprehensive centrifuge model test program involving 48 ship impact tests was performed on a 2×3 pile group and a 3×3 pile group founded in saturated silty sand. These model tests simulated groups of 2-m-diameter by 31.5-m-long pipe piles. The effects of three factors related to the ship (tonnage, speed, and bow structure) and two factors related to the bridge pier structure (superstructure mass and pile-group size) were investigated through these impact tests. The characteristics of the ship impact load were identified and the mechanism of the ship-bridge collision was analyzed. The test results show that the ship impact load was highly dependent on the ship bow structure and the ship impact speed. The test results were compared with other published data and the AASHTO loads. An empirical equation was suggested to relate the ship impact load to the five influencing factors.  相似文献   

9.
Cyclic Lateral Load Behavior of a Pile Cap and Backfill   总被引:1,自引:0,他引:1  
A series of static cyclic lateral load tests were performed on a full-scale 4×3 pile group driven into a cohesive soil profile. Twelve 324-mm steel pipe piles were attached to a concrete pile cap 5.18×3.05?m in plan and 1.12?m in height. Pile–soil–pile interaction and passive earth pressure provided lateral resistance. Seven lateral load tests were conducted in total; four tests with backfill compacted in front of the pile cap; two tests without backfill; and one test with a narrow trench between the pile cap and backfill soil. The formation of gaps around the piles at larger deflections reduced the pile–soil–pile interaction resulting in a degraded linear load versus deflection response that was very similar for the two tests without backfill and the trenched test. A typical nonlinear backbone curve was observed for the backfill tests. However, for deflections greater than 5 mm, the load-deflection behavior significantly changed from a concave down shape for the first cycle to a concave up shape for the second and subsequent cycles. The concave up shape continued to degrade with additional cycles past the second and typically became relatively constant after five to seven cycles. A gap formed between the backfill soil and the pile cap, which contributed to the load-deflection degradation. Crack patterns and sliding surfaces were consistent with that predicted by the log spiral theory. The results from this study indicate that passive resistance contributes considerably to the lateral resistance. However, with cyclic loading the passive force degrades significantly for deflections greater than 0.5% of the pile cap height.  相似文献   

10.
Pile Spacing Effects on Lateral Pile Group Behavior: Analysis   总被引:1,自引:0,他引:1  
Using the results from three full-scale lateral pile group load tests in stiff clay with spacing ranging from 3.3 to 5.65, computer analyses were performed to back-calculate p multipliers. The p multipliers, which account for reduced resistance due to pile–soil–pile interaction, increased as pile spacing increased from 3.3 to 5.65 diameters. Extrapolation of the test results suggests that group reduction effects can be neglected for spacings greater than about 6.5 for leading row piles and 7–8 diameters for trailing row piles. Based on analysis of the full-scale test results, pile behavior can be grouped into three general categories, namely: (1) first or front row piles; (2) second row piles; and (3) third and higher row piles. p multiplier versus normalized pile spacing curves were developed for each category. The proposed curves yield p multipliers which are higher than those previously recommended by AASHTO in 2000, the US Army in 1993, and the US Navy in 1982 based on limited test data, but lower values than those proposed by Reese et al. in 1996 and Reese and Van Impe in 2001. The response (load versus deflection, maximum moment versus load, and bending moment versus depth) for each row of the pile groups computed using GROUP and Florida Pier generally correlated very well with measurements from the full-scale tests when the p multipliers developed from this test program were employed.  相似文献   

11.
This paper describes the results of a model testing of the piles embedded in Nak-Dong River sand, located in south Korea, under monotonic lateral loadings. A number of features were studied, including the lateral resistance of piles, the effect of the installation method, and the pile head restraint condition. The study has led to recommendations of the load–transfer curves (p–y curves) for laterally loaded piles. Modification factors were developed to allow for both a different pile installation method and different pile head restraint conditions by comparison to existing model load tests. The proposed p–y curves were compared to the existing curves and were evaluated with the experimental data. The ultimate lateral soil resistance and subgrade modulus were investigated and discussed. It is revealed that the proposed p–y curves show significant differences in shapes and magnitudes when compared with existing p–y curve models. The accuracy of the proposed p–y curve model, considering the effect of installation method and pile head restraint condition, is very reasonable as shown by comparing measured and predicted lateral behavior of the pile.  相似文献   

12.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

13.
The laboratory and field test data on the response of piles under the combined action of vertical and lateral loads is rather limited. The current practice for design of piles is to consider the vertical and lateral loads independent of each other. This paper presents some results from three-dimensional finite-element analyses that show the significant influence of vertical loads on a pile’s lateral response. The analyses were performed in both homogeneous clayey soils and homogeneous sandy soils. The results have shown that the influence of vertical loads on the lateral response of piles is to significantly increase the capacity in sandy soils and marginally decrease the capacity in clayey soils. In general, it was found that the effect of vertical loads in sandy soils is significant even for long piles, which are as long as 30 times the pile width, while in the case of clayey soils, the effect is not significant for piles beyond a length of 15 times the width of the pile. The design bending moments in the laterally loaded piles were also found to be dependent on the level of vertical load on the piles.  相似文献   

14.
Effect of Cracking on the Response of Pile Test under Horizontal Loading   总被引:1,自引:0,他引:1  
Capacity-based design of structures limits the soil-structure interaction mechanism to the determination of the bearing capacity of a pile group. However, in many cases the criterion for the design of piles to resist lateral loads is not the ultimate lateral capacity but the deflection of the piles. Many procedures exist for estimating the response of single piles and pile groups under lateral loading, ranging from application of empirical relationships and simple closed-form solutions to sophisticated nonlinear numerical procedures. With the aim of investigating the effect of cracking, disregarded by most of the above-mentioned methods, a three-dimensional (3D) nonlinear analysis that accounts for cracking is presented. Response prediction correlates well with the experimental data from a full-scale pile load test. Interesting conclusions have also been drawn regarding the discretization of the computational domain and the combination of 3D numerical nonlinear analysis and the structural beam theory.  相似文献   

15.
Tapered piles in comparison to cylindrical piles can be beneficial in terms of the load capacity. In this paper, estimation of the load capacity for tapered piles using cone penetration test (CPT) resistance was investigated. Fourteen calibration chamber load tests using different pile types and six CPTs were conducted under various soil conditions. From the calibration chamber test results, the total, base, and shaft load capacities were analyzed in terms of soil conditions and taper angle. To evaluate CPT-based load capacity of tapered piles, normalized base and shaft resistances were obtained from normalized unit load-settlement curves. Based on the normalized base and shaft resistances, design equations that can be used to evaluate the base and shaft resistances of tapered piles were proposed. The proposed method is valid for sands of medium to dense conditions, while it may result in unconservative predictions for loose sands. To check the accuracy of the proposed method, field load tests using both cylindrical and tapered piles were conducted and compared with the predictions using the proposed method. A simplified approach using an equivalent cylindrical pile was also investigated and compared.  相似文献   

16.
Pipe piles can be classified as either closed- or open-ended piles. In the present paper, the load capacity of both closed- and open-ended piles is related to cone penetration resistance qc through an experimental program using calibration chamber model pile load tests and field pile load tests. A total of 36 calibration chamber pile load tests and two full-scale field pile load tests were analyzed. All the test piles were instrumented for separate measurement of each component of pile load capacity. Based on the test results, the normalized base resistance qb/qc was obtained as a function of the relative density DR for closed-ended piles, and of both the relative density DR and the incremental filling ratio (IFR) for open-ended piles. A relationship between the IFR and the relative density DR is proposed as a function of the pile diameter and driving depth. The relationship between IFR and DR allows the estimation of IFR and thus of the pile load capacity of open-ended piles at the design stage, before pile driving operations.  相似文献   

17.
This paper proposes a new approach for data reduction of horizontal load full-scale tests on piles and pile groups. This approach has been developed on results from tests run on bored concrete piles embedded in homogeneous and nonhomogeneous ground. Due to nonlinear response of pile material and also to nonhomogeneous embedding ground, the problem of fitting reliable curves for representing strains along shafts is increased. It is suggested that B-splines fixed by a weighted least-squares algorithm should be used to overcome that problem. Taking advantage of the mathematical properties of B-splines, an algorithm for computing the internal force distribution amongst pile heads direct from test results is also proposed for pile groups. It is shown that the integration of the curvatures to compute pile movements should be done using natural boundary conditions instead of pile head measurements whenever possible. Despite the concrete crack, the distribution of bending moments can be computed from curvatures provided a reliable reinforced concrete model is used. Finally, it is proposed to compute the soil reactions by the integration of bending moments, solving an integral equation by again using B-spline functions.  相似文献   

18.
The coupled bridge foundation-superstructure finite-element code FLPIER was employed to predict the lateral response of the single piles and 3 × 3 to 7 × 3 pile groups founded in both loose and medium dense sands. The p-multiplier factors suggested by McVay et al. for laterally loaded pile groups with multiple pile rows were implemented for the predictions. The soil parameters were obtained through a back-analysis procedure based on single pile test results. The latter, as well as the numerical predictions of both the single and group tests, are presented. It was found that the numerical code FLPIER did an excellent job of predicting the response of both the single piles and the 3 × 3 to 7 × 3 pile groups. The latter involved the predictions of lateral load versus lateral deflection of the group, the shears and bending moments developed in the individual piles, and the distributions of the lateral loads in each pile row, which were all in good agreement with the measured results.  相似文献   

19.
This paper demonstrates the application of the strain wedge (SW) model to assess the response of laterally loaded isolated long piles, drilled shafts, and pile groups in layered soil (sand and/or clay) and rock deposits. The basic goal of this paper is to illustrate the capabilities of the SW model versus other procedures and approaches. The SW model has been validated and verified through several comparison studies with model- and full-scale lateral load tests. Several factors and features related to the problem of a laterally loaded isolated pile and pile group are covered by the SW model. For example, the nonlinear behavior of both soil and pile material, the soil-pile interaction (i.e., the assessment of the p-y curves rather than the adoption of empirical ones), the potential of soil to liquefy, the interference among neighboring piles in a pile group, and the pile cap contribution are considered in SW model analysis. The SW model analyzes the response of laterally loaded piles based on pile properties (pile stiffness, cross-sectional shape, pile-head conditions, etc.) as well as soil properties. The SW model has the capability of assessing the response of a laterally loaded pile group in layered soil based on more realistic assumptions of pile interference as compared to techniques and procedures currently employed or proposed.  相似文献   

20.
Small-scale tests were carried out on a monopile and fin piles to determine the effect the length of fins had upon the lateral displacement of cyclically loaded piles. A variety of loading conditions were applied to model piles in a dense sand by using a mechanical loading system. Ten thousand cycles were used in each test to represent 20 years of environmental loading on offshore structures. Variables included the magnitude, frequency, and direction of the load; the type of pile tip; and the length of the fins. The reduction in pile head displacement was used as a measure of the efficiency of the fins. The tests show that the fins reduced the lateral displacement by at least 50% after 10,000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号