首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of Nonplastic Fines on the Liquefaction Resistance of Sands   总被引:5,自引:0,他引:5  
A laboratory parametric study utilizing cyclic triaxial tests was performed to clarify the effects of nonplastic fines on the liquefaction susceptibility of sands. Studies previously published in the literature have reported what appear to be conflicting results as to the effects of silt content on the liquefaction susceptibility of sandy soils. The current study has shown that if the soil structure is composed of silt particles contained within a sand matrix, the resistance to liquefaction of the soil is controlled by the relative density of the soil and is independent of the silt content of the soil. For soils whose structure is composed of sand particles suspended within a silt matrix, the resistance to liquefaction is again controlled by the relative density of the soil, but is lower than for soils with sand-dominated matrices at similar relative densities. In this case, the resistance to liquefaction is essentially independent of the amount and type of sand. These findings suggest the need for further evaluation of the effects of nonplastic fines content upon penetration resistance, and the manner in which this relationship affects the simplified methods currently used in engineering practice to evaluate the liquefaction resistance of silty soils.  相似文献   

2.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy in the assessment of the likelihood of liquefaction at a site affects the safety and economy of the design. In this paper, curves of cyclic resistance ratio (CRR) versus cone penetration test (CPT) stress-normalized cone resistance qc1 are developed from a combination of analysis and laboratory testing. The approach consists of two steps: (1) determination of the CRR as a function of relative density from cyclic triaxial tests performed on samples isotropically consolidated to 100 kPa; and (2) estimation of the stress-normalized cone resistance qc1 for the relative densities at which the soil liquefaction tests were performed. A well-tested penetration resistance analysis based on cavity expansion analysis was used to calculate qc1 for the various soil densities. A set of 64 cyclic triaxial tests were performed on specimens of Ottawa sand with nonplastic silt content in the range of 0–15% by weight, and relative densities from loose to dense for each gradation, to establish the relationship of the CRR to the soil state and fines content. The resulting (CRR)7.5-qc1 relationship for clean sand is consistent with widely accepted empirical relationships. The (CRR)7.5-qc1 relationships for the silty sands depend on the relative effect of silt content on the CRR and qc1. It is shown that the cone resistance increases at a higher rate with increasing silt content than does liquefaction resistance, shifting the (CRR)7.5-qc1 curves to the right. The (CRR)7.5-qc1 curves proposed for both clean and silty sands are consistent with field observations.  相似文献   

3.
This paper presents the results of a systematic laboratory investigation on the static behavior of silica sand containing various amounts of either plastic or nonplastic fines. Specimens were reconstituted using a new technique suitable for element testing of homogeneous specimens of sands containing fines deposited in water (e.g., alluvial deposits, hydraulic fills, tailings dams, and offshore deposits). The fabric of sands containing fines was examined using the environmental scanning electron microscope (ESEM). Static, monotonic, isotropically consolidated, drained triaxial compression tests were performed to evaluate the stress-strain-volumetric response of these soils. Piezoceramic bender element instrumentation was developed and integrated into a conventional triaxial apparatus; shear-wave velocity measurements were made to evaluate the small-strain stiffness of the sands tested at various states. The intrinsic parameters that characterize critical state, dilatancy, and small-strain stiffness of clean, silty, and clayey sands were determined. All aspects of the mechanical behavior investigated in this study (e.g., stress-strain-volumetric response, shear strength, and small-strain stiffness) are affected by both the amount and plasticity of the fines present in the sand. Microstructural evaluation using the ESEM highlighted the importance of soil fabric on the overall soil response.  相似文献   

4.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

5.
The cyclic liquefaction resistance of intact medium dense specimens of sands and silts obtained from offshore platform sites was compared to that of specimens reconstituted to the same values of shear wave velocity. The shear wave velocity was measured using a new system that is comprised of torsional piezoelectric ceramic ring transducers mounted in a triaxial cell, a multiwave measuring device, and special watertight connectors. The relationship between cyclic resistance ratio and the number of cycles to liquefaction Nf of intact and reconstituted specimens was compared at the same values of consolidation pressure and shear wave velocity. There was good agreement between cyclic resistance ratios of intact and reconstituted specimens with similar values of shear wave velocity if liquefaction is defined as ? 6% peak-to-peak axial strain. The results of this study support the hypothesis that the cyclic liquefaction resistance of reconstituted specimens may be restored to in situ conditions when their shear wave velocity is restored to in situ values.  相似文献   

6.
Shear wave velocity (Vs) offers engineers a promising alternative tool to evaluate liquefaction resistance of sandy soils, and the lack of sufficient in-situ databases makes controlled laboratory study very important. In this study, semitheoretical considerations were first given based on review of previous liquefaction studies, which predicted a possible relationship between laboratory cyclic resistance ratio (CRRtx) and Vs normalized with respect to the minimum void ratio, confining stress and exponent n of Hardin equation. Undrained cyclic triaxial tests were then performed on three reconstituted sands with Vs measured by bender elements, which verified this soil-type-dependent relationship. Further investigation on similar laboratory studies resulted in a database of 291 sets of data from 34 types of sandy soils, based on which the correlation between liquefaction resistance and Vs was established statistically and further converted to equivalent field conditions with well-defined parameters, revealing that CRR will vary proportionally with (Vs1)4. Detailed comparisons with Vs-based site-specific investigations show that the present lower-bound CRR–Vs1 curve is a reliable prediction especially for sites with higher CSR or Vs1. The framework of liquefaction assessment based on the present laboratory study is proposed for engineering practice.  相似文献   

7.
Shear Strength and Stiffness of Silty Sand   总被引:6,自引:0,他引:6  
The properties of clean sands pertaining to shear strength and stiffness have been studied extensively. However, natural sands generally contain significant amounts of silt and∕or clay. The mechanical response of such soils is different from that of clean sands. This paper addresses the effects of nonplastic fines on the small-strain stiffness and shear strength of sands. A series of laboratory tests was performed on samples of Ottawa sand with fines content in the range of 5–20% by weight. The samples were prepared at different relative densities and were subjected to various levels of mean effective consolidation stress. Most of the triaxial tests were conducted to axial strains in excess of 30%. The stress-strain responses were recorded, and the shear strength and dilatancy parameters were obtained for each fines percentage. Bender element tests performed in triaxial test samples allowed assessment of the effect of fines content on small-strain mechanical stiffness.  相似文献   

8.
Liquefaction Resistance of Soils from Shear-Wave Velocity   总被引:8,自引:0,他引:8  
A simplified procedure using shear-wave velocity measurements for evaluating the liquefaction resistance of soils is presented. The procedure was developed in cooperation with industry, researchers, and practitioners and evolved from workshops in 1996 and 1998. It follows the general format of the Seed-Idriss simplified procedure based on standard penetration test blow count and was developed using case history data from 26 earthquakes and >70 measurement sites in soils ranging from fine sand to sandy gravel with cobbles to profiles including silty clay layers. Liquefaction resistance curves were established by applying a modified relationship between the shear-wave velocity and cyclic stress ratio for the constant average cyclic shear strain suggested by R. Dobry. These curves correctly predicted moderate to high liquefaction potential for >95% of the liquefaction case histories and are shown to be consistent with the standard penetration test based curves in sandy soils. A case study is provided to illustrate application of the procedure. Additional data are needed, particularly from denser soil deposits shaken by stronger ground motions, to further validate the simplified procedure.  相似文献   

9.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy of the liquefaction potential assessment at a site affects the safety and economy of an engineering project. Although shear-wave velocity (Vs)-based methods have become prevailing, very few works have addressed the problem of the reliability of various relationships between liquefaction resistance (CRR) and Vs used in practices. In this paper, both cyclic triaxial and dynamic centrifuge model tests were performed on saturated Silica sand No. 8 with Vs measurements using bender elements to investigate the reliability of the CRR-Vs1 correlation previously proposed by the authors. The test results show that the semiempirical CRR-Vs1 curve derived from laboratory liquefaction test of Silica sand No. 8 can accurately classify the (CRR,Vs1) database produced by dynamic centrifuge test of the same sand, while other existing correlations based on various sandy soils will significantly under or overestimate the cyclic resistance of this sand. This study verifies that CRR-Vs1 curve for liquefaction assessment is strongly soil-type dependent, and it is necessary to develop site-specific liquefaction resistance curves from laboratory cyclic tests for engineering practices.  相似文献   

10.
Accounting for Soil Aging When Assessing Liquefaction Potential   总被引:1,自引:0,他引:1  
It has been recognized that liquefaction resistance of sand increases with age due to processes such as cementation at particle contacts and increasing frictional resistance resulting from particle rearrangement and interlocking. As such, the currently available empirical correlations derived from liquefaction of young Holocene sand deposits, and used to determine liquefaction resistance of sand deposits from in situ soil indices [standard penetration test (SPT), cone penetration test (CPT), shear wave velocity test (Vs)], are not applicable for old sand deposits. To overcome this limitation, a methodology was developed to account for the effect of aging on the liquefaction resistance of old sand deposits. The methodology is based upon the currently existing empirical boundary curves for Holocene age soils and utilizes correction factors presented in the literature that comprise the effect of aging on the in situ soil indices as well as on the field cyclic strength (CRR). This paper describes how to combine currently recorded SPT, CPT, and Vs values with corresponding CRR values derived for aged soil deposits to generate new empirical boundary curves for aged soils. The method is illustrated using existing geotechnical data from four sites in the South Carolina Coastal Plain (SCCP) where sand boils associated with prehistoric earthquakes have been found. These sites involve sand deposits that are 200,000?to?450,000?years in age. This work shows that accounting for aging of soils in the SCCP yields less conservative results regarding the current liquefaction potential than when age is not considered. The modified boundary curves indicate that old sand deposits are more resistant to liquefaction than indicated by the existing empirical curves and can be used to evaluate the liquefaction potential at a specific site directly from the current in situ properties of the soil.  相似文献   

11.
This paper discusses the applicability of two simple models for predicting pore water pressure generation in nonplastic silty soil during cyclic loading. The first model was developed by Seed et al. in the 1970s and relates the pore pressure generated to the cycle ratio, which is the ratio of the number of applied cycles of loading to the number of cycles required to cause liquefaction. The second model is the Green-Mitchell-Polito model proposed by Green et al. in 2000, which relates pore pressure generation to the energy dissipated within the soil. Based upon the results of approximately 150 cyclic triaxial tests, the writers show that both models are applicable to silty soils. A nonlinear mixed effects model was used for regression analyses to develop correlations for the necessary calibration parameters. The results show that the trends in both α and pseudoenergy capacity calibration parameters for the Seed et al. and Green et al. pore pressure generation models, respectively, differ significantly for soils containing less than and greater than ~ 35% fines, consistent with the limiting fines content concept.  相似文献   

12.
As an alternative to a field-based liquefaction resistance approach, cyclic triaxial tests with bender elements were used to develop a new correlation between cyclic resistance ratio (CRR) and overburden stress-corrected shear-wave velocity (VS1) for two nonplastic silts obtained from Providence, Rhode Island. Samples of natural nonplastic silt were recovered by block sampling and from geotechnical borings/split-spoon sampling. The data show that the correlation is independent of the soils’ stress history as well as the method used to prepare the silt for cyclic testing. The laboratory results indicate that using the existing field-based CRR-VS1 correlations will significantly overestimate the cyclic resistance of the Providence silts. The strong dependency of the CRR-VS1 curves on soil type also suggests the necessity of developing silt-specific liquefaction resistance curves from laboratory cyclic tests performed on reconstituted samples.  相似文献   

13.
This paper presents a new empirical equation for assessing liquefaction resistance of soils based on shear wave velocity Vs and the results of probabilistic analyses based on this empirical equation. A database consisting of in situ shear wave velocity measurements and field observations of liquefaction∕nonliquefaction in historic earthquakes is analyzed. This database is first used to train and test an artificial neural network to predict the occurrence of liquefaction∕nonliquefaction based on soil and seismic load parameters. The successfully trained and tested neural network is then used to establish the empirical equation. The concept of clean soil equivalence is introduced and used in the development of the empirical equation. The established empirical equation represents a deterministic method for assessing liquefaction resistance of a soil. Based on this newly developed deterministic method, probabilistic analyses of the cases in the database are conducted using the logistic regression approach and the mapping function approach. The results provide a basis for risk-based evaluation of liquefaction evaluation.  相似文献   

14.
An experimental study on the effects of nonplastic silt on the three-dimensional drained behavior of loose sand was performed employing a true triaxial testing apparatus. Laboratory experiments were performed on clean sand and on sand containing 20% nonplastic silt. The results indicate the failure stress levels and the overall trends of the stress–strain behavior were similar for both sands. However, the volume change behavior is significantly influenced by the presence of silt. The silty sand exhibited higher degrees of volumetric contraction during shearing than the clean sand. Relative density was used as the basis of comparison. The development of a shear band appears to have caused failure in all true triaxial testing performed, except in triaxial compression. This form of instability appears to increase its influence on the experimental results as the participation of intermediate principal stress increases. The formation of shear bands also appears to coincide with the cessation of contractive volumetric strain.  相似文献   

15.
Factors for correcting liquefaction resistance for aged sands using ratios of measured to estimated shear-wave velocity (MEVR) are derived in this paper. Estimated values of shear-wave velocity (VS) are computed for 91 penetration resistance-VS data pairs using previously published relationships. Linear regression is performed on values of MEVR and corresponding average age. Age of the sand layer is taken as the time between VS measurements and initial deposition or last critical disturbance. It is found that MEVR increases by a factor of about 0.08 per log cycle of time, and time equals about 6?years on average when MEVR equals 1 for the recommended penetration resistance-VS relationships. The resulting regression equation is combined with the strength gain equation reported by Hayati et al. 2008 in “Proc., Geotechnical Earthquake Engineering and Soil Dynamics IV,” to produce a MEVR versus deposit resistance correction relationship. This new corrective relationship is applied to create liquefaction resistance curves based on VS, standard penetration test blow count, and cone tip resistance for sands of various ages (or MEVRs). Because age of natural soil deposits is usually difficult to accurately determine, MEVR appears to be a promising alternative.  相似文献   

16.
Resistance against earthquake-related liquefaction is usually assessed using relationships between an index of soil strength such as normalized cone tip resistance and the cyclic resistance ratio (CRR) developed from observed field performance. The alternative approach based on laboratory testing is rarely used, mainly because of the apprehension that laboratory results may not reflect field behavior since the quality of laboratory data is often compromised by sampling disturbance. In this study, a database of laboratory data obtained mainly from cyclic testing of frozen (undisturbed) samples and in situ index measurements from near sampling locations comprised of cone tip resistance, qc, and shear wave velocity, Vs, have been assembled. These data indicate that neither normalized cone tip resistance nor normalized shear wave velocity individually correlate well with laboratory-measured CRR. However, the ratio of qc to the small strain shear modulus, G0, relates reasonably with CRR via separate correlations depending on geologic age. The derived qc/G0-CRR relationships were also found to be consistent with earthquake field-performance case histories.  相似文献   

17.
Three potential lateral spreads exhibited negligible displacements during the 1999 Kocaeli, Turkey Earthquake (Mw = 7.5) even though they were located within 7?km of the fault rupture. These spreads are analyzed to verify and augment current procedures for predicting liquefaction resistance and lateral spread displacement. The sites include ?ark Canal and Cumhuriyet Avenue in Adapazari, underlain by fine-grained sediment, and Degirmendere Nose adjacent to Izmit Bay, a steeply sloping area underlain by moderately dense silty sand. The plasticity index and moisture content criteria of Bray and Sancio set forth in 2006 indicate that much of the fine-grained sediment is liquefiable. Even though liquefaction likely occurred, lateral spreading did not occur due either to the dilative nature of fine-grained, sandlike sediments or the inherent strength of claylike sediments. Corrected blow counts, (N1)60, in moderately dense sand at Degirmendere Nose range from 15 to 25 blows/30?cm, indicating that liquefaction should have occurred but that the silty sand was too dense and dilative to deform. This finding is consistent with the MLR procedure of Youd et al. set forth in 2002 that identifies liquefiable sands with (N1)60 greater than 15 blows/30?cm as resistant to lateral spread during earthquakes with M<8.  相似文献   

18.
Assessing Probability-based Methods for Liquefaction Potential Evaluation   总被引:2,自引:0,他引:2  
This paper presents an assessment of existing and new probabilistic methods for liquefaction potential evaluation. Emphasis is placed on comparison of probabilities of liquefaction calculated with two different approaches, logistic regression and Bayesian mapping. Logistic regression is a well-established statistical procedure, whereas Bayesian mapping is a relatively new application of the Bayes’ theorem to the evaluation of soil liquefaction. In the present study, simplified procedures for soil liquefaction evaluation, including the Seed–Idriss, Robertson–Wride, and Andrus–Stokoe methods, based on the standard penetration test, cone penetration test, and shear wave velocity measurement, respectively, are used as the basis for developing Bayesian mapping functions. The present study shows that the Bayesian mapping approach is preferred over the logistic regression approach for estimating the site-specific probability of liquefaction, although both methods yield comparable probabilities. The paper also compares the three simplified methods in the context of probability of liquefaction, and argues for the use of probability-based procedures for evaluating liquefaction potential.  相似文献   

19.
The liquefaction susceptibility of various graded fine to medium saturated sands are evaluated by stress controlled cyclic triaxial laboratory tests. Cyclic triaxial tests are performed on reconstituted specimens having global relative density of 60%. In all cyclic triaxial tests, loading pattern is selected as a sinusoidal wave form with 1.0 Hz frequency and effective consolidation pressure is chosen as 100 kPa. Liquefaction resistance is defined as the required cyclic stress ratio causing initial liquefaction in 10 cycles during the cyclic triaxial test. The results are used to draw conclusions on the effect of the extreme void ratios and void ratio range on the liquefaction resistance of various graded sands.  相似文献   

20.
A backpropagation artificial neural network (ANN) model has been developed to predict the liquefaction cyclic resistance ratio (CRR) of sands using data from several laboratory studies involving undrained cyclic triaxial and cyclic simple shear testing. The model was verified using data that was not used for training as well as a set of independent data available from laboratory cyclic shear tests on another soil. The observed agreement between the predictions and the measured CRR values indicate that the model is capable of effectively capturing the liquefaction resistance of a number of sands under varying initial conditions. The predicted CRR values are mostly sensitive to the variations in relative density thus confirming the ability of the model to mimic the dominant dependence of liquefaction susceptibility on soil density already known from field and experimental observations. Although it is common to use mechanics-based approaches to understand fundamental soil response, the results clearly demonstrate that non-mechanistic ANN modeling also has a strong potential in the prediction of complex phenomena such as liquefaction resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号