共查询到20条相似文献,搜索用时 46 毫秒
1.
宋英 《机械工程与自动化》2010,(6)
给出了欠定情况下的盲分离模型,从时域和频域对信号的稀疏特性做了简要的陈述.基于信号稀疏特性的欠定情况下盲分离一般采用两步法,对其核心步骤混叠分离矩阵A的估计中的聚类方法做了总结、归纳.对比了几种主要聚类方法的优缺点,并对今后欠定情况下混叠矩阵A的研究方向做了进一步展望. 相似文献
2.
3.
在振动与声测量中,由于结构对振动的传播作用以及声传播过程中散射与混响效应的存在,传感器(如加速度计或麦克风)所测得的信号往往是多个源的混合。盲源分离作为一种强有力的冗余取消工具,可以正确恢复独立源信号的波形。不过在具体实施中,所有的盲源分离算法都依赖于一个基本假设,即传感观测信号数必须大于或等于系统中的独立源数,而实际机器中独立源的数目往往未知。为此首先提出一种基于奇异值分解的聚类不相关源数估计新方法,估计一个系统中独立源数的上界,并籍此获得足够维数的传感观测信号,保证盲源分离方法在实际应用中的正确实施,从而共同构建一个能获取无法直接观测的独立源波形的虚拟传感观测系统。实验结果表明了该系统潜在的实用意义。 相似文献
4.
在大型旋转机械故障诊断中,由于故障源数动态变化,无法准确估计源数并有效分离出故障源.针对这一问题,采用拓展四阶累积量矩阵估计动态故障源数,并根据源信号数与传感器数的关系,选择相应的盲源分离算法实现自适应盲源分离.实验结果表明,该源数估计算法能有效地估计出包括欠定情况下的动态故障源数,自适应盲源分离算法能有效地实现正定、超定与欠定盲源分离的故障诊断. 相似文献
5.
传统源数估计方法要求传感器数大于或等于源数,而盲信号很难满足这个条件,为此,提出了一种新的源数估计方法。该方法在传感器数与源数关系不明确的情况下,仅根据观测信号的功率谱密度函数的比值即可对源数作出估计。通过理论分析、仿真和实验,证明了该方法的有效性。 相似文献
6.
7.
滚动轴承的故障信号是一种典型的非线性非平稳信号,其信号中常常混有噪声信号及其他干扰成分。提出了一种基于流形学习的滚动轴承故障盲源分离方法,首先,利用经验模态分解(empirical mode decomposition,简称EMD)对单通道模拟信号进行分解,对得到的多通道信号构造其协方差矩阵,计算矩阵的奇异值下降速比得到原始信号数目;其次,利用峭度等指标选择最优观测信号,利用核主成分分析(kernel principal components analysis,简称KPCA)提取信号的流形成分;最后,利用快速独立成分分析(fast independent component analysis,简称Fast ICA)还原得到源信号。该方法不但解决了故障信号的欠定盲源分离问题,还提出了最优观测信号的确定准则,并通过实例验证了方法的有效性。 相似文献
8.
9.
连轧机组的稳定性对于保障轧制产品的质量精度起着决定性的作用,连轧机组中监测各轧机状态的信号具有强耦合性,从复杂的信号中分离出各轧机独立的状态信号,对连轧机组的状态监测和故障诊断具有重要的意义。提出了一种基于稀疏特征的连轧机故障信号分离方法,并进行了仿真和现场验证。首先,通过基于时频谱分割的稀疏分解方法将各混合信号中的微弱冲击特征提取出来;其次,对所有稀疏表示信号的原子按照一定规律排序,得到各混合信号的稀疏矩阵;然后,根据稀疏原子的相似性对稀疏表示的原子进行聚类,确定盲源分离的源个数;最后,根据稀疏矩阵的系数和源个数比较准确地估计出混叠矩阵,实现混合信号的盲分离。 相似文献
10.
11.
12.
远程光电容积描记法(rPPG)是一种基于视频的非接触心率检测技术,由于其携带的血容量脉搏(BVP)信号幅值微弱易受运动噪声影响。本文提出一种融合色差模型和盲源分离的运动鲁棒视频心率检测技术。一方面,对每个感兴趣区域(ROIs)采用色差模型并时延构建多通道数据集,凸显准周期变量同时抑制无规律运动噪声;另一方面,采用联合盲源分离提取共同包含于两个数据集中的BVP源分量向量(SCVs),筛选合适的SCV确定为BVP信号,从而计算心率值。所提方法在数据库UBFC-RPPG和ECG-Fitness上验证并与其他方法对比,在剧烈运动场景下性能最佳,心率HRmae=9.93 bpm,HRrmse=16.17 bpm,相关系数r=0.75,为rPPG技术的实用化进程提供了解决思路。 相似文献
13.
盲源分离方法在旋转机械故障诊断中的应用 总被引:1,自引:0,他引:1
在旋转机械故障诊断中,从被监测机器测得的振动信号除噪声干扰外,还常混叠有其它机器的振动。由所测得的此混叠信号中分离出被监测机器的信号,并降低噪声的影响,是提高故障诊断准确性的基础。这里采用四阶累积量迫零算法对机器振动信号进行分离,通过仿真信号及实验室实测振动信号的分离验证,此方法是有效的,可作为旋转机械故障诊断的信号预处理方法。 相似文献
14.
15.
《Mechanical Systems and Signal Processing》2007,21(6):2335-2358
The present study carries out output-only modal analysis using two blind source separation (BSS) techniques, namely independent component analysis and second-order blind identification. The concept of virtual source is exploited and renders the application of these BSS techniques possible. The proposed modal analysis method is illustrated using numerical and experimental examples. 相似文献
16.
17.
Qingkun Liu Peiwen Que Huawei Guo Shoupeng Song 《Russian Journal of Nondestructive Testing》2006,42(1):63-68
This paper proposes a new denoising method for ultrasonic NDE (nondestructive evaluation) signals using blind separation (BSS)
technology. The proposed denoising method consists of four steps. First, a reconstructed phase space (RPS) is constructed
from observed ultrasonic NDE signals. The information about the underlying sources (e.g., ultrasonic signal, noise, etc.)
acting on this system is contained in this RPS. Second, independent component analysis (ICA) is performed on the RPS to recover
all sources underlying the RPS. Next, the ultrasonic signal component is selected by a decision criterion related to the denoising
application and, finally, is reconstructed to obtain the denoised ultrasonic signal. To validate the proposed method, it has
been applied to the experimental ultrasonic NDE signals of the test sample and is compared with the wavelet denoising method
in SNR (signal-to-noise ratio) enhancement. The experimental results show that the SNR of the ultrasonic NDE signals can be
enhanced greatly using the proposed denoising method and the proposed method has almost the same denoising performance as
the wavelet denoising method in SNR enhancement. A trait of the proposed denoising method is the ability to denoise ultrasonic
NDE signals by separating the ultrasonic signal and noise using blind source separation technology.
The text was submitted by the authors in English. 相似文献
18.
基于时间序列变分贝叶斯理论的信号盲源分离 总被引:2,自引:0,他引:2
研究信号盲源分离中源信号和混合矩阵估计问题.独立分量分析盲源分离的不足之处在于不能估计混合矩阵和源信号的能量及顺序;变分独立因子分析盲源分离的不足之处在于依赖参数初值.将一般变分贝叶斯理论用于时间序列,推导出时间序列的变分贝叶斯期望极大算法.将此算法用于信号盲源分离,同时将传感器噪声逆方差的分布取为Wishart分布,得到了理论上更合理的后验分布参数更新规则.仿真数据和实际语音信号盲源分离结果表明这种方法可以比较准确地估计混合矩阵和源信号,在一定程度上弥补了独立分量分析和变分独立因子分析盲源分离的不足. 相似文献
19.
侵彻过载信号成份复杂,传统盲源分离方法无法有效提取弹体侵彻板靶特征,基于此提出一种不受测试传感器数量限制、具有源数估计的侵彻过载信号盲源分离方法。首先,对单通道测试信号进行总体经验模态分解,将分解后的固有模态与原信号组成多维信号;其次,对组成的多维信号奇异值分解,以"前K次奇异值占优"法则估计信号振源个数,利用"最大互相关系数法"筛选最优IMF函数与原信号重组构造多通道混合信号;最后,对多通道混合信号白化处理和联合近似对角化,计算酉矩阵获得测试信号的混合估计。将其用于单通道侵彻过载信号的特征提取,获得了与源信号相关度为0.974 7的加速度特征信号。与现有方法相比,该方法能有效分离出单通道侵彻过载特征信号,并且信号处理过程具有的自适应特性也解决了不同弹靶工况下过载信号滤波频率的选择困难问题。 相似文献
20.
Principal component analysis and blind source separation of modulated sources for electro-mechanical systems diagnostic 总被引:1,自引:0,他引:1
Under the only hypothesis of independent sources, blind source separation (BSS) consists of recovering these sources from several observed mixtures of them. As it extracts the contributions of the sources independently of the propagation medium, this approach is usually used when it is too difficult to modelise the transfer from the sources to the sensors. In that way, BSS is a promising tool for non-destructive machine condition monitoring by vibration analysis. Principal component analysis (PCA) is applied as a first step in the separation procedure to filter out the noise and whiten the observations. The crucial point in PCA and BSS methods remains that the observations are generally assumed to be noise-free or corrupted with spatially white noises. However, vibration signals issued from electro-mechanical systems as rotating machine vibration may be severely corrupted with spatially correlated noises and therefore the signal subspace will not be correctly estimated with PCA.This paper extends a robust-to-noise technique earlier developed for the separation of rotating machine signals. It exploited spectral matrices of delayed observations to eliminate the noise influence. In this paper, we focus on the modulated sources and prove that the proposed PCA is available to denoise such sources as well as sinusoidal ones. Finally, performance of the algorithm is investigated with experimental vibration data issued from a complex electro-mechanical system. 相似文献