首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对电动汽车锂离子电池组散热及温度均匀性对电池组使用性、可靠性和安全性的影响,本文以国内某汽车公司开发的纯电动汽车锂离子电池组为研究对象,基于空气放大器,根据流体力学的附壁效应,对电池组冷却系统的性能进行研究。通过用少量高压空气作为动力源,带动周围空气流动形成高压和高速气流对电池组冷却,同时利用fluent对该系统进行仿真模拟与分析。仿真结果表明,在并行通风方式下,该冷却系统电池组内的最高温度为315K,电池模块之间的最高温差为6K,系统冷却效果良好;而且随着空气放大器扩大空气流量倍数以及空气放大器数量的增加,冷却效果进一步提升;而在相同额定功率下,风扇冷却系统电池组内最高温度可达317K,电池模块之间的最高温差可达7K。该研究简单易用,冷却效果良好,具有一定的推广应用价值。  相似文献   

2.
开发了一种新型催化精馏元件.以空气和水为介质,在内径Φ20 mm冷模装置上优化了新型催化精馏元件的结构参数,并对其流体力学性能进行了实验研究,得到了填料层压降△P/Z、泛点填料因子ΦF和压降填料因子ΦP的关联式.结果表明:新型催化精馏元件具有液泛气速高、持液量稳定、催化剂装填量大、装填方便和单位床层高度压降低等优点.  相似文献   

3.
分析采用不同氧化剂和改变气体压力对质子交换膜燃料电池性能的影响,用测定电压/电流密度曲线的方法研究了质子交换膜燃料电池的性能特点以及电池温度对电池性能的影响,并对氢-氧和氢-空气燃料电池做了性能对比,实验结果是氧气作氧化剂比空气作氧化剂性能好得多,而且随着温度的增加性能有所改善.压力实验结果是随着气体压力的增大电池性能增强,输出功率增大.  相似文献   

4.
开发用于氧气还原反应(ORR)的高效催化剂是提高燃料电池和金属-空气电池性能的关键。然而,ORR是动力学缓慢反应,存在着很高的过电势,从而降低了燃料电池和金属-空气电池的能量转换效率。高熵合金是由5种或5种以上金属元素等(近)物质的量比形成的一种新型合金材料。凭借其独特的组分与结构优势,高熵合金能够高效加速ORR、降低ORR过电势,表现出对ORR的显著催化作用。文章主要综述了高熵合金的结构、性能特点、制备方法以及在催化ORR方面的应用,并提出了挑战和发展展望。  相似文献   

5.
酸液体系的性能对于油气藏酸化压裂增产至关重要.在室内实验的基础上,对新型可携砂交联酸体系进行了研究.根据携砂酸压工艺在耐温、抗剪切及携砂方面的要求,分别针对交联酸酸液体系的流变性、减阻性、滤失性、缓蚀性、单砂体颗粒沉降性及酸液体系破胶性等基本性能进行了测试分析.实验表明,这种新型酸液体系适应于现场携砂酸压的具体要求.同时,该酸液体系确保了酸液携砂裂缝充填工艺与酸化作用的有机结合.最后,经交联酸携砂酸压现场实践表明,该酸液体系具有良好的携砂性能和酸液破胶返排性能,从而确保了油气藏增产改造效果.  相似文献   

6.
有机电解液体系的锂空气电池因其超高能量密度受到广泛关注.为寻求高性能、安全实用的锂空气电池,国内外就正极材料、催化剂、电解液和锂负极等开展了大量研究,其中空气电极的优化、电解液的稳定性是锂空气电池高性能发挥的关键.介绍了近年有机电解液锂空气电池空气电极上的反应机理、空气电极影响因素、正极材料和催化剂等最新研究进展,分析了各类多孔材料和催化剂的优缺点,及其对电池电化学性能的影响,结合本课题组研究成果,指出了锂空气电池空气电极的发展方向,即结合新型复合氧化物催化剂,构筑独特的多孔电极结构,以实现高容量、长寿命的锂空气电池.  相似文献   

7.
本文介绍了用于大庆30万吨/年乙烯装置中的B、D型波纹筛板的流体力学性能试验结果。对自由截面率相近,孔径不同的五块B、D型波纹筛板的流体力学试验数据进行了标绘和关联。  相似文献   

8.
提出了具有泵及减压阀两用的新型射流泵装置及其自动控制系统,利用流体力学基本理论及准二维分析方法,建立了装置的数学模型,采用神经网络及专家系统交互处理方法进行优化控制,在大量的实际数据基础上,研制了新型射流砂装置计算机智能控制系统。  相似文献   

9.
加拿大阿尔伯塔大学的研究人员采用碳纳米管材料开发出一种新型碳纳米管阴极电池。与目前市场上普通的锂硫电池和锂空气电池等锂离子电池相比,该新型电池的充电速度更快,容量更大,使用寿命更长,且更易于小型化,可用来制造手机或可穿戴设备的电池。  相似文献   

10.
本文概括了新型功能新料-贮氢材料的发展状况和应用研究进展,重点综述了稀土储氢合金性能改善方面的最新成果和用于二次电池的贮氢材料的状况。  相似文献   

11.
光伏聚光发电随动系统研究   总被引:1,自引:1,他引:0  
为了提高光伏电池转换效率,采用八面光漏斗聚光器将太阳光进行会聚叠加,使相同的光伏组件能够产生更多的电能,从而减少单瓦光伏发电的成本.将带有定时功能的自动跟踪装置与新型太阳能发电聚光器相配合,设计了自动跟踪聚光器的光信号检测装置、跟踪控制电路、驱动电路以及调整装置,通过选用效率高且功耗低的PIC16F916和LMD18245分别作为控制芯片和驱动芯片,极大的提升了系统性能,达到了自动跟踪太阳运行轨迹,提高光伏电池转换效率的目的.  相似文献   

12.
目的优化质子交换膜(PEM)燃料电池的操作参数,提高PEM燃料电池的性能和稳定性,降低成本.方法运用燃料电池测试站对有效面积为16cm^2的PEM燃料电池单体的伏安特性和功率密度进行了实验,分析了空气流量、氢气流量和背压对PEM燃料电池性能和功率密度的影响.结果试验结果发现:增大空气流量。燃料电池的性能可以持续提高;增大氢气的流量,电池性能先提高,但流量达到一定值后,性能几乎不变;增大电池背压,电池性能提高.结论电极的淹没现象主要存在于PEM燃料电池的阴极;实验条件下.氢气流量存在最佳值、  相似文献   

13.
质子交换膜燃料电池流场的合理设计有利于组分浓度、电流密度等的均匀分布,从而达到提高电池性能的目的。采用计算流体力学软件Fluent中的PEM模块,对3种常见的流场形式分别从氧气摩尔浓度、膜中水含量和电流密度分布等3个方面进行了综合分析。结果显示,电池性能由高到低依次为:多蛇形I流场、多蛇形II流场和平行流场。该方法可用于指导质子交换膜燃料电池空气流场的优化设计。  相似文献   

14.
分析探讨了几种燃气(油)热风装置的空气加热装置--烟气-空气热交换器的结构型式,优化设计了一种板式换热器,并制作了样机。通过正交试验设计,对试验工况作了安排,采用单纯性法,在微机上对试验数据进行了处理,拟事出该种换热器性能试验关系式。结果表明该换热器用于燃气(油)热风机减少了中间热损失,传热效果好,空气阻力小。  相似文献   

15.
不同流道结构质子交换膜燃料电池内传递现象的三维模拟   总被引:3,自引:0,他引:3  
应用计算流体力学方法,建立了用于模拟质子交换膜燃料电池(PEMFC)传递特性和电化学性能的稳态、等温的三维数学模型。计算了传统流道和交叉梳状流道燃料电池的流场、电流密度和组分浓度等的多维分布。与传统流道的燃料电池相比,交叉梳状流道所产生的电极内强烈的强制对流机理提高了反应物和产物的传输速率,从而改善了电池的极限电流和极化性能等。利用模型估算的极化特性和文献实验结果吻合较好。  相似文献   

16.
无膜单液全沉积型铅酸液流电池是以甲基磺酸中二价铅离子的电化学沉积/溶解反应为充放电基础的新型储能装置.归纳了全沉积型铅酸液流电池的反应机理和特点,介绍了电解液组成、添加剂选择、电极材料性能等对正负极二氧化铅和铅的电化学沉积/溶解过程和电池充放电性能影响的研究进展情况.  相似文献   

17.
空气电极防水透气膜的工艺研究   总被引:1,自引:0,他引:1  
对防水透气膜中各成分用量及制备工艺参数进行优化研究,确定了防水透气膜的最佳工艺条件,制备出空气电极,用空气电极与铝阳极成功组装单电池,并采用SEM、稳态极化曲线法和恒电流放电法对防水透气膜的性能进行研究.结果表明:防水透气膜具有优异的电化学性能,空气电极的极化明显减小,电流密度由82mA/cm^2提高到150m~cm^2;单电池样品的恒流放电容量在40Ah以上。  相似文献   

18.
为有效提升锂氧电池的电化学性能,以钴铝复合金属氢氧化物(Co Al-LDH)作为催化剂,研究其对锂空气电池性能的影响.采用工艺简单、成本低廉的共沉淀法将其与石墨烯复合后,制备出r GO/Co Al-LDH纳米复合材料,并将其应用于锂氧电池.采用X射线衍射、拉曼光谱、同步热分析和扫描电镜对材料结构进行表征,利用恒流充放电测试、交流阻抗测试(EIS)和线性伏安扫描(LSV)对电池电化学性能进行表征.研究结果表明:制备得到的纳米复合材料可明显提升氧还原反应(ORR)的催化活性,首次放电容量达到2 662 m A·h·g~(-1),与单纯石墨烯相比提高了51.5%,同时充电电位降低了430 m V.循环过程中电池库伦效率较高,电池循环性能得到显著改善.  相似文献   

19.
本文概括了新型功能材料——贮氢材料的发展状况和应用研究进展,重点综述了稀土储氢合金性能改善方面的最新成果和用于二次电池的贮氢材料的状况。  相似文献   

20.
介绍一套内循环无梯度反应器-阀炉-气相色谱联合反应装置,用于乙醇催化脱水反应的实验研究。求得表观活化能,并用数理统计方法估算了实验数据的精度,说明该实验装置的重复性是满足要求的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号