首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
1. The biotransformation of a single i.p. dose of [14C]2-chloroaniline (1.0 mmol/kg, approximately 60 microCi/rat) was investigated in the urine and faeces of the male Fischer 344 rat. 2. During 24 h, 53.1% of the administered radioactivity was eliminated into the urine, while < 1% of the radioactivity appeared in the faeces. 3. The major biotransformation pathways were para-hydroxylation and sulphate conjugation. 4-Amino-3-chlorophenyl sulphate was the major urinary metabolite comprising 31.6% of total urinary radioactivity. The para-hydroxylated metabolite, 4-amino-3-chlorophenol (10.8%), and its O-glucuronide conjugate (3.7%) were also urinary metabolites. The formation of direct conjugates of 2-chloroaniline, the N-sulphate and N-glucuronide, was significant with as much as 18.6 and 8.6%, respectively, of these metabolites excreted in the urine. The parent compound, 2-chloroaniline, accounted for 16.9% of urinary radioactivity. 4. N-Acetylated products were minor metabolites present in urine as 2-chloro-4-hydroxyacetanilide and its sulphate or glucuronide conjugate. Neither 2-chloroacetanilide nor its oxidation products, 2-chloroglycolanilide and 2-chlorooxanilic acid, were urinary metabolites.  相似文献   

2.
The antimycobacterial drug rifabutin is extensively metabolized in humans and laboratory animals. About 40% of the dose is excreted in urine as unchanged drug, and lipophilic (extractable with 1-chlorobutane) and polar metabolites. Polar metabolites accounted for 59.1 +/- 2.5% and 88.8 +/- 4.4% of radioactivity in urine collected over 96 hr after intravenous administration of 25 and 1 mg/kg of [14C]rifabutin to Sprague-Dawley rats, respectively. After 48 hr, all urinary radioactivity consisted of polar metabolites. The most abundant polar metabolite, identified by electrospray ionization-MS, collision-induced dissociation-MS, and comparison of HPLC retention times with the synthetic standard, was N-isobutyl-4-hydroxy-piperidine. Lipophilic metabolites accounted for <20% of urinary radioactivity. Major lipophilic metabolites, 25-O-deacetyl-rifabutin, 27-O-demethyl-rifabutin, 31-hydroxy-rifabutin, 32-hydroxy-rifabutin, and 20-hydroxy-rifabutin were isolated from both human and rat urine by HPLC and identified by electrospray ionization-MS, collision-induced dissociation-MS, and NMR spectrometry. In addition, two metabolites formed by the oxidation of the N-isobutyl-piperidyl group of rifabutin were found in the urine of rats, but not humans.  相似文献   

3.
[3H]-testosterone undecanoate ([3H]TU) was administered orally to 4 patients with a thoracic duct catheter after neck dissection surgery. Appearance of radioactivity in lymph, plasma and urine was measured at different times. Metabolites of TU in these fluids were investigated. Peak levels of radioactivity appeared simultaneously in lymph and plasma (2.5-5 h after administration) while the excretion in urine was highest approximately 2 h after the plasma and lymph peak. The main compounds appearing in the lymph were TU and 5alpha-dihydrotestosterone undecanoate (5alpha-DHTU), but 5beta-DHTU could not be detected. In plasma almost all metabolites were probably conjugated. During the first 24 h approximately 40% of the administered radioactivity was excreted in the urine. The total amount of radioactivity excreted in the urine during the first week was 45-48%. The predominant urinary metabolites were testosterone- and androsterone-glucuronide. The results indicate that TU is metabolized partly in the intestinal wall. The remaining TU and newly-formed 5alpha-DHTU, at least partly, are absorbed via the lymphatic system.  相似文献   

4.
1. In healthy male volunteers, the absorption, metabolite profiles and excretion of 14C-benidipine hydrochloride, a new Ca antagonist, were investigated after oral administration at a dose of 8 mg. 2. 14C-benidipine hydrochloride was rapidly absorbed, and the plasma concentration of radioactivity and unchanged drug reached a maximum of 71.2 ng eq./ml at 1.1 h and 2.56 ng/ml at 0.6 h respectively, and then declined bi-exponentially. The half-life in the elimination phase was 14.7 and 5.3 h respectively, AUC of unchanged drug was low, about 1% of that of radioactivity. 3. Five days after administration, 36.4% of the administered radioactivity was excreted in urine and 58.9% in faeces. 4. The metabolite profiles in plasma, urine and faeces were analysed by hplc. At 1 h after administration the predominant metabolites in plasma were M9 and M2, which accounted for 13.8 and 8.2% of the radioactivity respectively, whereas unchanged drug represented 1.2%. Predominant metabolites in urine 12 h after administration were M3 and M8, which accounted for 2.22 and 2.21% of the administered radioactivity respectively. Metabolites excreted in faeces 120 h after administration were very complex and poorly separated by hplc and could not be characterized: unchanged drug was not detected in the faeces.  相似文献   

5.
Tritium labelled (x=1.1 MBq/17.7 microg/kg) and unlabelled 8-iso-PGF2alpha (43 microg/kg) were administered intravenously to female rabbits and frequent blood and continuous urinary samples were collected up to 4 h. The total radioactivity was lost rapidly from the circulation. About 80% of the total radioactivity was found in urine within 4 h. The plasma half-life of 8-iso-PGF2alpha is found to be 1 min at the distribution phase. The terminal elimination phase half-life was about 4 min. At 1.5 min after administration 64%, 19% and 13% of the plasma radioactivity represented 8-iso-PGF2alpha, 15-keto-8-iso-PGF2alpha and beta-oxidised products, respectively. The values for 20-min plasma were 5%, 2%, and 88%. The radiochromatograms from 10 min-4 h urinary samples were dominated by more polar beta-oxidised products. Alpha-Tetranor-15-keto-13,14-dihydro-8-iso-PGF2alpha was identified as a major urinary metabolite.Thus, 8-iso-PGF2alpha metabolises in the rabbit mainly to several degraded polar metabolites through dehydrogenation at C-15, reduction of delta13-double bond and beta-oxidation, and excretes efficiently into the urine.  相似文献   

6.
The metabolism and excretion of a new anxiolytic/antidepressant drug candidate, CP-93,393, ((7S, 9aS)-1-(2-pyrimidin-2-yl-octahydro-pyrido[1, 2-a]-pyrazin-7-yl-methyl)-pyrrolidine-2,5-dione) were investigated in cynomolgus monkeys after oral administration of a single 5 mg/kg dose of 14C-CP-93,393. Urine, bile, feces, and blood samples were collected and assayed for total radioactivity, parent drug, and metabolites. Total recovery of the administered dose after 6 days was 80% with the majority recovered during the first 48 hr. An average of 69% of the total radioactivity was recovered in urine, 4% in bile, and 7% in feces. Mean Cmax and AUC(0-infinity) values for the unchanged CP-93,393 were 143.2 ng/ml and 497.7 ng.hr/ml, respectively, in the male monkeys and 17.2 ng/ml and 13.7 ng.hr/ml, respectively, in the female monkeys. HPLC analysis of urine, bile, feces, and plasma from both male and female monkeys indicated extensive metabolism of CP-93,393 to several metabolites. The identification of metabolites was achieved by chemical derivatization, beta-glucuronidase/sulfatase treatment, and by LC/MS/MS, and the quantity of each metabolite was determined by radioactivity detector. CP-93,393 undergoes metabolism by three primary pathways, aromatic hydroxylation, oxidative degradation of the pyrimidine ring, and hydrolysis of the succinimide ring followed by a variety of secondary pathways, such as oxidation, methylation, and conjugation with glucuronic acid and sulfuric acid. The major metabolites, oxidation on the pyrimidine ring to form 5-OH-CP-93,393 (M15) followed by glucuronide and sulfate conjugation (M7 and M13), accounted for 35-45% of the dose in excreta. Two metabolites (M25 and M26) were formed by further oxidation of M15 followed by methylation of the resulting catechol intermediate presumably by catechol-O-methyl transferase. A novel metabolic pathway, resulting in the cleavage of the pyrimidine ring, was also identified. The metabolites (M18, M20, and M21) observed from this pathway accounted for 8-15% of the dose. Aliphatic hydroxylation of the succinimide ring was a very minor pathway in monkey. 5-Hydroxy-CP-93,393 (M15, 37-49%), its sulfate and glucuronide conjugates (M7 and M13, approximately 34%), and the pyrimidine ring cleaved product (M18, approximately 8%) were the major metabolites in monkey plasma. The identified metabolites accounted for approximately 90, 93, 97, and 92% of the total radioactivity present in urine, bile, plasma, and feces, respectively. The major in vivo oxidative metabolites were also observed after in vitro incubations with monkey liver microsomes.  相似文献   

7.
The metabolism of toborinone, (+/-)-6-[3-(3,4-dimethoxybenzylamino)-2-hydroxypropoxy]-2(1H)-quin - olinone, a novel inotropic agent, was studied in rats and dogs after intravenous administration. Chemical structures of the 13 metabolites were characterized by direct-probe FAB/MS and field desorption/MS, LC/FAB/MS, and various NMR measurements. After intravenous dosing of 10 mg/kg [14C]toborinone, fecal and urinary recoveries of the 14C dose were approximately 70% and 26-30%, respectively, in both rats and dogs. The predominant component of radioactivity was the unchanged toborinone in every biological specimen in rats and dogs. Although unchanged toborinone was predominantly observed, toborinone underwent extensive conjugations with glucuronic acid, sulfate, and glutathione, either directly or following phase I reaction. Metabolites resulting from oxidative N-C cleavage were minor both in number and in quantity in every biological specimen in rats and dogs. In rats, toborinone underwent O-demethylation to form M-7 and successive phase it reaction to yield the glucuronide M-1 and the sulfoconjugate M-2, and deconjugation to yield M-7, which was a primary metabolite accounted for 35.67% of the radioactivity excreted in the feces by 48 hr. Conjugates M-1 and M-2 were the major metabolites in rat plasma. In dogs, toborinone was metabolized via mercapturic acid pathway to yield the primary metabolites, cysteine conjugates M-10 and M-11 that accounted for 19.10% and 6.70% of the radioactivity excreted in the feces by 48 hr and that were detected species specifically in dogs. The glutathione conjugate M-13, which was isolated from in vitro incubations using dog liver, led us to consider a possible mercapturic acid pathway from the parent compound to M-10. Metabolites in dog plasma and those in urine in both rats and dogs were minor in quantity. The metabolic pathways of toborinone in rats and dogs are proposed herein.  相似文献   

8.
The metabolic disposition of 14C-bromfenac, an orally active, potent, nonsteroidal, nonnarcotic, analgesic agent was investigated in six healthy male subjects after a single oral 50-mg dose. The absorption of radioactivity was rapid, producing a mean maximum plasma concentration (Cmax) of 4.9 +/- 1.8 microg x equiv/mL, which was reached 1.0 +/- 0.5 hours after administration. Unchanged drug was the major component found in plasma, and no major metabolites were detected in the plasma. Total radioactivity recovered over a 4-day period from four of the six subjects averaged 82.5% and 13.2% of the dose in the urine and feces, respectively. Excretion into urine was rapid; most of the radioactivity was excreted during the first 8 hours. Five radioactive chromatographic peaks, a cyclic amide and four polar metabolites, were detected in 0- to 24-hour urine samples. Similarity of metabolite profiles between humans and cynomolgus monkeys permitted use of this animal model to generate samples after a high dose for structure elucidation. Liquid chromatography/mass spectrometry (LC/MS) analysis of monkey urine samples indicated that the four polar metabolites were two pairs of diastereoisomeric glucuronides whose molecular weight differed by two daltons. Enzyme hydrolysis, cochromatography, and LC/MS experiments resulted in the identification of a hydroxylated cyclic amide as one of the aglycones, which formed a pair of diastereoisomeric glucuronides after conjugation. Data also suggested that a dihydroxycyclic amide formed by the reduction of the ketone group that joins the phenyl rings formed the second pair of diastereoisomeric glucuronides. Further, incubation of various reference standards in control (blank) urine and buffer with and without creatinine indicated that the hydroxy cyclic amide released from enzyme hydrolysis can undergo ex vivo transformations to a condensation product between creatinine and an alpha-keto acid derivative of the hydroxy cyclic amide that is formed by oxidation and ring opening. Further experiments with a dihydroxylated cyclic amide after reduction of the keto function indicated that it too can form a creatinine conjugate.  相似文献   

9.
1,4-Phenylenebis(methylene)selenocyanate (p-XSC) inhibits chemically induced tumors in several laboratory animal models. To understand its mode of action, we synthesized p-[14C]XSC, examined its excretion pattern in female CD rats and also the nature of its metabolites. p-[14C]XSC was synthesized from alpha,alpha-dibromo-p-[ring-14C]xylene in 80% yield. The excretion profile of p-[14C]XSC (15.8 mg/kg body wt, 200 microCi/rat, oral administration, in 1 ml corn oil) in vivo was monitored by measuring radioactivity and selenium content. On the basis of radioactivity, approximately 20% of the dose was excreted in the urine and 68% in the feces over 3 days. The cumulative percentages of the dose excreted over 7 days were 24% in urine and 75% in feces, similar to excretion rates of selenium. According to selenium measurement, <1% of the dose was detected in exhaled air; radioactivity was not detected. Only 15% of the dose was extractable from the feces with EtOAc and was identified as tetraselenocyclophane (TSC). Most of the radioactivity remained tightly bound to the feces. Approximately 10% of this bound material converted to TSC on reduction with NaBH4. Organic soluble metabolites in urine did not exceed 2% of the dose; sulfate (9 % of urinary metabolites) and glucuronic acid (19.5% of urinary metabolites) conjugates were observed but their structural identification is still underway. Co-chromatography with a synthetic standard led to the detection of terephthalic acid (1,4-benzenedicarboxylic acid) as a minor metabolite. The major urinary conjugates contained selenium. Despite the low levels of selenium in the exhaled air, the reductive metabolism of p-XSC to H2Se cannot be ruled out. Identification of TSC in vivo indicates that a selenol may be a key intermediate responsible for the chemopreventive action of p-XSC.  相似文献   

10.
Zopolrestat (Alond) is a new drug that is being evaluated as an aldose reductase inhibitor for the treatment of diabetic complications. 14C-labeled zopolrestat was orally administered to rats for a tissue distribution study and a bile duct cannulation metabolism study. Tissue samples from the distribution study were analyzed by complete oxidation and liquid scintillation counting. Urine and bile samples from the bile duct cannulation study were analyzed by microbore HPLC, with simultaneous radioactivity monitoring and atmospheric pressure ionization tandem mass spectrometry. The mass balance in the distribution study demonstrated that the greatest exposure (AUC0-infinity) occurred in the liver, followed by the ileum and large intestine. The time of maximal plasma concentrations for nearly all tissues was 4 hr after the dose, and the half-life of radioactivity in most tissues (8-10 hr) was similar to the half-life in plasma. For the bile duct-cannulated rat study, most of the radioactivity was recovered in the bile, indicating that biliary excretion is a major route of elimination of zopolrestat and its metabolites in rats. Numerous oxidative metabolites, as well as phase II conjugates, were identified in the bile and urine samples. Acyl glucuronides of zopolrestat and unchanged drug accounted for >85% of biliary radioactivity, whereas unchanged drug and degradation products of glutathione conjugates were identified as the major urinary metabolites.  相似文献   

11.
1. The pharmacokinetics and metabolism of uniformly labeled 14C/13C-ortho-phenylphenol (OPP) were followed in six human male volunteers given a single 8 h dermal dose of 6 microg OPP/kg body weight formulated as a 0.4% (w/v) solution in isopropyl alcohol. The application site was covered with a non-occlusive dome allowing free movement of air, but preventing the loss of radioactivity due to physical contact. At 8 h post-exposure the non-occlusive dome was removed, the dose site was wiped with isopropyl alcohol containing swabs and the skin surface repeatedly stripped with tape. Blood specimens, urine, and feces were collected from each volunteer over a 5 day post-exposure period and were analyzed for radioactivity and metabolites (urine only). 2. Following dermal application, peak plasma levels of radioactivity were obtained within 4 h post-exposure and rapidly declined with virtually all of the absorbed dose rapidly excreted into the urine within 24 h post-exposure. A one-compartment pharmacokinetic model was used to describe the time-course of OPP absorption and clearance in male human volunteers. Approximately 43% of the dermally applied dose was absorbed through the skin with an average absorption half-life of 10 h. Once absorbed the renal clearance of OPP was rapid with an average half-life of 0.8 h. The rate limiting step for renal clearance was the relatively slower rate of dermal absorption; therefore the pharmacokinetics of OPP in humans was described by a 'flip-flop' single compartment model. Overall, the pharmacokinetics were similar between individuals, and the model parameters were in excellent agreement with the experimental data. 3. Approximately 73% of the total urinary radioactivity was accounted for as free OPP, OPP-sulfate and OPP-glucuronide conjugates. The sulfate conjugate was the major metabolite (approximately 69%). Therefore, total urinary OPP equivalents (acid-labile conjugates+free OPP) can be used to estimate the systemically absorbed dose of OPP. 4. The rapid excretion of OPP and metabolites into the urine following dermal exposure indicates that OPP is unlikely to accumulate in humans upon repeated exposure. Based on these data, blood and/or urinary OPP concentration (acid-labile conjugates) could be utilized to quantify the amount of OPP absorbed by humans under actual use conditions.  相似文献   

12.
AIMS: Single dose pharmacokinetics and safety of irbesartan, an angiotensin II receptor antagonist, were evaluated in healthy young and elderly male and female subjects. METHODS: Irbesartan was administered as two 25 mg capsules after a 10 h fast to 12 young men, 12 young women, 12 elderly men and 12 elderly women. Serial blood and urine sample were collected up to 96 h after the dose. Plasma and urine samples were analysed for irbesartan by h.p.l.c./fluorescence methods. RESULTS: No statistically significant gender effects were observed in peak plasma concentration (Cmax), area under the curve (AUC), and terminal elimination half-life (t1/2) of irbesartan. The geometric mean AUC and Cmax increased by about 43% and 49%, respectively, in the elderly subjects. Also the time to peak was significantly shorter in the elderly subjects compared with that observed in the young subjects. Renal clearance ofirbesartan was significantly reduced in the elderly females but this reduction is not likely to be of any clinical relevance since less than 3% of the administered dose of irbesartan is excreted unchanged in the urine. CONCLUSIONS: Although there was an effect of age on the pharmacokinetics of irbesartan, based on the safety and efficacy profile, no adjustment in irbesartan dosage is necessary with respect to age or gender.  相似文献   

13.
1. The metabolic fate of 14C-CD-349, a new calcium antagonist, was studied in rat and dog. 2. After oral administration of 14C-labelled drug in both species, the plasma levels of radioactivity reached maxima at 1-2 h and declined with elimination half-lives of 6-7 h. In both species, 71-85% of radioactivity was excreted in faeces and 17-27% in urine in 120 h. Biliary excretion in rat after oral doses amounted to 33%. 3. The low ratio of unchanged drug to total radioactivity in plasma suggested that CD-349 underwent rapid metabolism in both species. 4. Twenty-two metabolites were isolated and identified from dog urine and an incubation mixture with 9000 g rat liver supernatant. Principal routes of biotransformation of CD-349 were similar in both species, and involved: (1) oxidation of the dihydropyridine ring to the corresponding pyridine ring; (2) denitration of the nitrate ester; (3) hydrolysis of the carboxy ester to the carboxylic acid; and/or (4) oxidation of the side chain, although quantitative interspecies differences were observed.  相似文献   

14.
The metabolism of the reproductive and developmental toxicant bis(2-methoxyethyl)ether (diglyme) was studied in isolated rat hepatocytes and in the intact rat. Male Sprague-Dawley rats (190-220 g) were used in both studies. Hepatocytes, isolated by a two-step in situ collagenase perfusion of the liver, were cultured as monolayers and incubated with [14C]diglyme at 1, 10, 30, and 50 microM for up to 48 h. For the in vivo study, rats were given single oral doses of [14C]diglyme at 5.1 mmol/kg body wt, and urine was collected for up to 96 h. Radioactive compounds in the culture medium or in the urine were separated by high performance liquid chromatography and quantified with an in-line radioactivity monitor. Metabolites were identified by comparison of their chromatographic retention times and their mass spectra with those of authentic compounds. The principal metabolite from hepatocytes and in the urine was (2-methoxyethoxy)acetic acid (MEAA). This metabolite accounted for approximately 36% of the radioactivity in the 48-h culture medium and about 67% of the administered dose in the 48-h urine. Other prominent metabolites common to both systems included 2-(2-methoxyethoxy)ethanol, methoxyacetic acid (MAA), 2-methoxyethanol, and diglycolic acid. The diglyme metabolite profiles from urine and from hepatocytes were qualitatively similar, demonstrating that, in the rat, hepatocytes serve as a good model system for predicting the urinary metabolites of diglyme. Moreover, MEAA was shown to be the metabolite best suited for use as a short-term biological marker of exposure to diglyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
12-Hydroxyeicosatetraenoic acid (12-HETE) is one of the major metabolites formed from arachidonic acid in platelets. We have recently shown that the in vitro metabolism of 12-HETE by human leukocytes, with and without stimulation, is effectively inhibited by the addition of physiological concentrations of albumin, probably by sequestration of the compound. In the present paper, we have studied the in vivo metabolism of 12-HETE in the rabbit, using either [1-14C]- or [14C(U)]12-HETE. Distribution of radioactivity was followed in urine, plasma, and bile, as well as in a number of tissues. In most of the tissues examined, the hydrophilic radioactivity constituted more than 50% of the total radioactivity after 20 min. When the lipophilic fraction was analyzed, around 15% of the radioactivity was shown to be unesterified 12-HETE, and only a very minor part could be detected as metabolites. The dominating lipophilic compound in the circulation after i.v. administration of radiolabeled 12-HETE was at all time points (1-60 min.) the parent compound, as analyzed by HPTLC and HPLC. A comparison of the plasma metabolite profiles obtained when [1-14C]- and [14C(U)]12-HETE were used displayed almost identical patterns, thus indicating that beta-oxidized metabolites either were not formed or were rapidly removed from the circulation. The appearance of large amounts of water-soluble radioactivity with time supported the latter conclusion. Several minor metabolites were seen that chromatographed in the dihydroxy acid region as judged by HPLC and TLC. The major one of these compounds represented about 10% of the lipophilic plasma radioactivity after 60 min., while unmetabolized 12-HETE at this stage still represented about 30%. The metabolite had a polarity similar to 12,20-dihydroxyeicosatetraenoic acid; however, when chromatographed together, these two compounds separated, indicating a different structure of the metabolite. Our findings are in agreement with in vitro data concerning the protective effect of albumin on the metabolism of 12-HETE and is the first extensive metabolic study of 12-HETE in vivo covering all metabolic possibilities involving the carbon skeleton.  相似文献   

16.
A simple, rapid and sensitive two column-switching high-performance liquid chromatographic (HPLC) method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (AY4166, I) and its seven metabolites in human plasma and urine. Measurements of I and its metabolites were carried out by two column-switching HPLC, because metabolites were classified into two groups according to their retention times. After purification of plasma samples using solid-phase extraction and direct dilution of urinary samples, I and each metabolite were injected into HPLC. The calibration graphs for plasma and urinary samples were linear in the ranges 0.1 to 10 microg ml(-1) and 0.5 to 50 microg ml(-1), respectively. Recoveries of I and its seven metabolites were over 88% by the standard addition method and the relative standard deviations of I and its metabolites were 1-6%.  相似文献   

17.
The disposition of S-2-[4-(3-methyl-2-thienyl)phenyl]propionic acid (CAS 155680-07-2, S-MTPPA, code: M-5011) was studied after oral administration to rats, dogs and monkeys using the 14C-labeled drug. After oral dosing, S-MTPPA was well absorbed from the gastrointestinal tract, to the extent of 97.7% in rats. The concentration of S-MTPPA in rat plasma reached a peak (Cmax: 13.07 micrograms/ml) at 15 min (tmax) after dosing and declined with a half-life (t1/2) of 2.5 h. The values of the parameters tmax, Cmax and t1/2 for dogs were 30 min, 26.2 micrograms/ml and 7.0 h, and those for monkeys were 15 min, 12.8 micrograms/ml and 3.0 h, respectively. The radioactivity was widely distributed in tissues and almost completely excreted in urine and feces within 48 h after oral administration to rats. The excretion of radioactivity in bile, urine and feces within 48 h after oral administration of 14C-S-MTPPA to bile duct-cannulated rats amounted to 75.0, 18.6 and 1.4% of the dose, respectively. The drug was metabolized mainly by oxidation of the thiophenyl moiety and by glucuronidation of the carboxyl group in rats and monkeys. The major urinary and fecal metabolite in dogs was identified as the taurine conjugate of MTPPA.  相似文献   

18.
2,4-Pentanedione (2,4-PD; CAS No. 123-54-6), an industrial chemical, was investigated for its comparative pharmacokinetics in male Fischer 344 rats by a single intravenous (i.v.) injection of (4.3, 43, 148.5, and 430 mg/kg), or a 6-hr nose-only inhalation exposure (400 ppm) to 14C-2,4-PD. For the i.v. route, the plasma concentration of 14C-2,4-PD-derived radioactivity declined in a biexponential fashion. The overall form of the 14C plasma concentration-time curves and derived pharmacokinetic parameters indicated that dose-linear kinetics occurred in the i.v. dose range 4.3-148.5 mg/kg, but not with 430 mg/kg. Metabolism of 2,4-PD was quite rapid as the concentration of unmetabolized 2,4-PD declined steadily to undetectable after 8 hr. 14C-2,4-PD derived radioactivity was eliminated mainly as 14CO2 and in urine. For the 4.3, 43 and 148.5 mg/kg doses 14CO2 elimination was relatively constant (36.8, 38.8 and 42.3% in 48 hr samples respectively) and greater than urinary excretion (17.9, 14.3 and 29.6%; 48 hr specimens). At 430 mg/kg i.v. there was a reversal of the excretion pattern, with urine 14C excretion (54.7%) becoming greater than that for 14CO2 (27.3%). Excretion in expired volatiles and feces was small. Radiochromatograms of urine showed free 2,4-PD in the 12 hr sample, together with 7 other metabolites. Free 2,4-PD and 6 of the metabolites decreased or were not detectable in a 24 or 48 hr urine sample, but one peak (retention 7.9 min) increased progressively to become the major fraction (97%). Nose-only exposure to 400 ppm 14C-2, 4-PD produced a mean decrease in breathing rate of 20.1%, which was constant and sustained throughout exposure, due to a lengthening of the expiratory phase of the respiratory cycle. 14C-2,4-PD was rapidly absorbed during the first 3 hr of exposure, then began to plateau, but did not reach a steady state. Postexposure elimination of 14C from plasma followed a biexponential form with a t1/2 for the terminal disposition phase of 30.72 hr. Plasma unmetabolized 2,4-PD was present throughout the whole of the exposure phase, but was significantly less than total 14C. Postexposure, plasma unmetabolized 2,4-PD declined rapidly to undetectable concentrations by 12 hr. Radiolabel excretion was approximately equivalent in urine (37.6%) and expired 14CO2 (36.3%). Urine radiochromatograms showed a minor 2,4-PD contaminant (0.6-5.9% over 48 hr), along with 7 other peaks probably representing metabolites. As with the 148.5 mg/kg i.v. dose, the major metabolite peak was at 7.8 min retention, increasing from 41.1% (12 hr) to 62.8% (48 hr). Immediately postexposure, radioactivity was present in all tissues examined, but on a concentration basis (microgram equiv/g) there was no preferential accumulation of 14C in any tissue or organ. On a total organ basis, highest contents were in liver and kidney, presumably related to the metabolism and excretion of 2,4-PD. By 48 hr postexposure, concentrations had decreased in all tissues except fat, presumably due to the lipophilicity of 14C residues. The profile of the plasma-time radioactivity curves, and the presence of residual radioactivity in tissues at 48 hr postexposure, suggests that a cumulative process could occur with frequent repeated exposures.  相似文献   

19.
Female rats were dosed intraperitoneally with 14C-hexaxhlorobenzene. The drug was administered on 2 or 3 occasions. The total doses amounted to 260 and 390 mg/kg 14C-hexachlorobenzene, respectively. Urine and feces from the animals were collected over a period of 4 weeks after the first injection. Both excreta and some tissues of the animals were examined for their content of radioactivity and for hexachlorobenzene and its metabolites. Gas chromatography, isotope dilution analysis, and combined gas chromatography-mass spectrometry were used to identify the metabolites of hexachlorobenzene. In urine pentachlorophenol, tetrachlorohydroquinone, and pentachlorothiophenol were present as major metabolites. One of the isomers of tetrachlorothiophenol was present as a minor metabolite. In the feces pentachlorophenol and pentachlorothiophenol only were identified. At the end of the experiment, carbon-14 excreted with urine and feces amounted to 7% and 27%, respectively, of the radioactivity administered. More than 90% of carbon-14 excreted in urine was contained in the major metabolites. In the feces about 30% of the excreted radioactivity was bound to metabolites and about 70% was contained in the unchanged drug, while in the tissues of the animals only pentachlorophenol was detected in measurable amounts, accounting for 10% of label in blood and less than 0.1% of carbon-14 determined in body fat. Total radioactivity contained in the metabolites detected in the animal body and in the excreta at the end of the experiment accounted for about 16% of the administered radioactivity.  相似文献   

20.
We investigated the possible role of enterohepatic recirculation in prolongation of the half-life of elimination for Adriamycin, a commonly prescribed anticancer agent. We sought to determine whether enterohepatic recirculation of Adriamycin and its metabolites occurs using a linked-rat model. Two rats, a donor and a receiver, were linked via a catheter from the bile duct of the donor rat to the duodenum of the receiver. Control experiments were conducted with intact rats (without a bile duct cannula, control A) in order to estimate the half-life of elimination and with bile duct-cannulated rats (control B) to determine the amounts of Adriamycin and its metabolites in the bile. [14C-14]-Adriamycin was injected intravenously via the femoral vein to control A, control B and donor rats. The biological half-life of Adriamycin in the intact rats (control A, 10 h) was significantly higher than in the bile-duct-cannulated rats (control B, 4 h). The cumulative amount of Adriamycin and its metabolites excreted in the urine of the control A rats was also greater than from control B rats, indicating higher levels of the drug in their systemic circulation. Biological samples (bile, urine, plasma, blood cells and the major organs heart, liver and kidney) of the receivers contained significant amounts of Adriamycin and its metabolites. The total radioactivity recovered in the bile of the receivers accounted for 0.1% to 8% of the Adriamycin dose that was administered to the donors. Adriamycin and its metabolites appeared there only after a lag time that was consistent among all the receivers. Doxorubicinol aglycone was the major metabolite found in the bile and urine of the receivers. Low but constant levels of radioactivity were also detected in the plasma and blood cells of the receivers. The presence of unchanged Adriamycin in the bile and urine of the receivers suggested absorption of the parent drug from the intestine of the receivers. Overall, we estimated that about 22% of the dose injected to the donors was absorbed from the intestine of the receivers. Taken together, these findings clearly demonstrate a significant role for enterohepatic recirculation of Adriamycin and its metabolites, which may contribute to the ability of these compounds to induce cumulative cardiac damage and/or to increase the efficacy of Adriamycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号