首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodendrocytes and their progenitors (O-2A) express functional kainate- and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptors. The physiological consequences of activation of these receptors were studied in purified rat cortical O-2A progenitors and in the primary oligodendrocyte cell line CG-4. Changes in the mRNA levels of a set of immediate early genes were studied and were correlated to intracellular Ca2+ concentration, as measured by fura-2 Ca2+ imaging. Both in CG-4 and in cortical O-2A progenitors, basal mRNA levels of NGFI-A were much higher than c-fos, c-jun, or jun-b. Glutamate, kainate, and AMPA greatly increased NGFI-A mRNA and protein by activation of membrane receptors in a Ca(2+)-dependent fashion. Agonists at non-N-methyl-D-aspartate receptors promoted transmembrane Ca2+ influx through voltage-dependent channels as well as kainate and/or AMPA channels. The influx of Ca2+ ions occurring through glutamate-gated channels was sufficient by itself to increase the expression of NGFI-A mRNA. AMPA receptors were found to be directly involved in intracellular Ca2+ and NGFI-A mRNA regulation, because the effects of kainate were greatly enhanced by cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA but not kainate receptors. Our results indicate that glutamate acting at AMPA receptors regulates immediate early gene expression in cells of the oligodendrocyte lineage by increasing intracellular calcium. Consequently, modulation of these receptor channels may have immediate effects at the genomic level and regulate oligodendrocyte development at critical stages.  相似文献   

2.
We investigated the effect of domoate, kainate and AMPA on 45Ca2+ uptake and on metabolic activity of cultured chick amacrine-like cells, as measured by reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Domoate and kainate stimulated 45Ca2+ uptake and decreased MTT reduction, in a LY 303070-sensitive manner. AMPA caused a small increase on 45Ca2+ uptake, but it was without effect on MTT reduction. AMPA reduced both the 45Ca2+ entry and neurotoxicity induced by kainate, and cyclothiazide enhanced both the 45Ca2+ entry and neurotoxicity induced by AMPA. The results indicate that the AMPA receptors are the non-NMDA glutamate receptors involved in excitotoxicity.  相似文献   

3.
The effect of gamma-aminobutyric acid (GABA) on intracellular Ca2+ concentration ([Ca2+]i) in cultured prenatal rat cortical neurons was investigated using fluorescence imaging. GABA or muscimol, but not baclofen, increased [Ca2+]i in a dose-dependent manner. The GABAA receptor antagonists, bicuculline and picrotoxin, inhibited the GABA response. Furosemide, an inhibitor of the Na+/K+/2Cl- cotransporter, inhibited the GABA response in a noncompetitive manner. Ethacrynic acid, an inhibitor of an ATP-dependent Cl- pump, also inhibited the GABA-induced increased in [Ca2+]i. These results suggest a role for Cl- transport processes in the GABA response. The coapplication of GABA and high K+ led to a non-additive increase in the GABA response. The GABA response was also inhibited by nifedipine, a voltage-gated Ca2+ channel blocker, and abolished by the absence of extracellular Ca2+. Results indicate that the GABA response shares a common pathway of Ca2+ movement with the high K(+)-induced response. These observations suggest that the stimulation with GABA results in Ca2+ influx through voltage-gated Ca2+ channels, and that these effects are dependent on Cl- transport systems.  相似文献   

4.
1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.  相似文献   

5.
N-methyl--aspartate (NMDA) receptors are often the first ionotropic glutamate receptors expressed at early stages of development and appear to influence neuronal differentiation by mediating Ca2+ influx. Although less well studied, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors also can generate Ca2+ elevations and may have developmental roles. We document the presence of AMPA and NMDA class receptors and the absence of kainate class receptors with whole cell voltage-clamp recordings from Xenopus embryonic spinal neurons differentiated in vitro. Reversal potential measurements indicate that AMPA receptors are permeable to Ca2+ both in differentiated neurons and at the time they first are expressed. The PCa/Pmonocation of 1.9 is close to that of cloned Ca2+-permeable AMPA receptors expressed in heterologous systems. Ca2+ imaging reveals that Ca2+ elevations are elicited by AMPA or NMDA in the absence of Mg2+. The amplitudes and durations of these agonist-induced Ca2+ elevations are similar to those of spontaneous Ca2+ transients known to act as differentiation signals in these cells. Two sources of Ca2+ amplify AMPA- and NMDA-induced Ca2+ elevations. Activation of voltage-gated Ca2+ channels by AMPA- or NMDA-mediated depolarization contributes approximately 15 or 30% of cytosolic Ca2+ elevations, respectively. Activation of either class of receptor produces elevations of Ca2+ that elicit further release of Ca2+ from thapsigargin-sensitive but ryanodine-insensitive stores, contributing an additional approximately 30% of Ca2+ elevations. Voltage-clamp recordings and Ca2+ imaging both show that these spinal neurons express functional AMPA receptors soon after neurite initiation and before expression of NMDA receptors. The Ca2+ permeability of AMPA receptors, their ability to generate significant elevations of [Ca2+]i, and their appearance before synapse formation position them to play roles in neural development. Spontaneous release of agonists from growth cones is detected with glutamate receptors in outside-out patches, suggesting that spinal neurons are early, nonsynaptic sources of glutamate that can influence neuronal differentiation in vivo.  相似文献   

6.
In the present study we evaluated the modulation of neuronal delayed rectifier K+ current (IK) by activation of ionotropic glutamate receptors. In whole-cell voltage-clamp experiments, an external application of 10-100 microM kainate suppressed the amplitude of IK following an inward shift of holding current. The effect of kainate on IK was eliminated by CN QX, an AMPA/kainate receptor antagonist, indicating that the receptor-mediated cation entry caused IK suppression. When external Na+ was completely replaced by equimolar choline+ or N-methyl-D-glucamine, kainate-induced IK suppression was abolished. Our results suggest that in cultured rat cortical neurons, AMPA/kainate receptor activation leads to an intracellular Na+ increase which blocks delayed rectifier K+ channels. This contributes to feed-forward excitation of neuronal cells in glutaminergic responses.  相似文献   

7.
Properties of receptors for glutamate, consisting of kainate, alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA), and gamma-aminobutyric acid (GABA) in the rat trigeminal ganglion (TG) neurons were studied by means of the whole-cell patch-clamp technique. 1. All TG neurons (diameter 20 approximately 40 microns) responded to GABA, but none of them responded to AMPA, NMDA, and glycine. TG neurons responding to kainate were smaller than 25 microns and desensitized by prolonged agonist exposure. 2. On the basis of the dose-response curves, EC50 and Hill coefficient were found to be 13. 7 microM and 1.2 for kainate, while those for GABA were 28.6 microM and 2.0, respectively. 3. Most kainate receptors in the TG neurons showed linear current-voltage (I-V) relations, though some showed inward rectification. The "Instantaneous" I-V relationship for GABA was linear, where as the "steady-state" I-V relationship produced by ramp changes in potential showed outward rectification in some neurons. 4. The number of TG neurons responding to kainate increased until the 8th postnatal day, while all the recorded neurons responded to GABA in postnatal days. The results indicated that there are kainate and GABAA receptors in the TG neurons and suggested that they are composed of various subunits.  相似文献   

8.
During neurogenesis in the embryonic cerebral cortex, the classical neurotransmitters GABA and L-glutamate stimulate ionic conductance changes in ventricular zone (VZ) neuroblasts. Lysophosphatidic acid (LPA) is a bioactive phospholipid producing myriad effects on cells including alterations in membrane conductances (for review, see Moolenaar et al., 1995). Developmental expression patterns of its first cloned receptor gene, lpA1/vzg-1 (Hecht et al., 1996; Fukushima et al., 1998) in the VZ suggested that functional LPA receptors were synthesized at these early times, and thus, LPA could be an earlier stimulus to VZ cells than the neurotransmitters GABA and L-glutamate. To address this possibility, primary cultures of electrically coupled, presumptive cortical neuroblast clusters were identified by age, morphology, electrophysiological profile, BrdU incorporation, and nestin immunostaining. Single cells from cortical neuroblast cell lines were also examined. Whole-cell variation of the patch-clamp technique was used to record from nestin-immunoreactive cells after stimulation by local administration of ligands. After initial plating at embryonic day 11 (E11), cells responded only to LPA but not to GABA or L-glutamate. Continued growth in culture for up to 12 hr produced more LPA-responsive cells, but also a growing population of GABA- or L-glutamate-responsive cells. Cultures from E12 embryos showed LPA as well as GABA and L-glutamate responses, with LPA-responsive cells still representing a majority. Overall, >50% of cells responded to LPA with depolarization mediated by either chloride or nonselective cation conductances. These data implicate LPA as the earliest reported extracellular stimulus of ionic conductance changes for cortical neuroblasts and provide evidence for LPA as a novel, physiological component in CNS development.  相似文献   

9.
The widespread neuronal injury that results after brief activation of highly Ca2+-permeable NMDA channels may, in large part, reflect mitochondrial Ca2+ overload and the consequent production of injurious oxygen radicals. In contrast, AMPA/kainate receptor activation generally causes slower toxicity, and most studies have not found evidence of comparable oxygen radical production. Subsets of central neurons, composed mainly of GABAergic inhibitory interneurons, express AMPA/kainate channels that are directly permeable to Ca2+ ions. Microfluorometric techniques were performed by using the oxidation-sensitive dye hydroethidine (HEt) to determine whether the relatively rapid Ca2+ flux through AMPA/kainate channels expressed on GABAergic neurons results in oxygen radical production comparable to that triggered by NMDA. Consistent with previous studies, NMDA exposures triggered increases in fluorescence in most cultured cortical neurons, whereas high K+ (50 mM) exposures (causing depolarization-induced Ca2+ influx through voltage-sensitive Ca2+ channels) caused little fluorescence change. In contrast, kainate exposure caused fluorescence increases in a distinct subpopulation of neurons; immunostaining for glutamate decarboxylase revealed the responding neurons to constitute mainly the GABAergic population. The effect of NMDA, kainate, and high K+ exposures on oxygen radical production paralleled the effect of these exposures on intracellular Ca2+ levels when they were monitored with the low-affinity Ca2+-sensitive dye fura-2FF, but not with the high-affinity dye fura-2. Inhibition of mitochondrial electron transport with CN- or rotenone almost completely blocked kainate-triggered oxygen radical production. Furthermore, antioxidants attenuated neuronal injury resulting from brief exposures of NMDA or kainate. Thus, as with NMDA receptor activation, rapid Ca2+ influx through Ca2+-permeable AMPA/kainate channels also may result in mitochondrial Ca2+ overload and consequent injurious oxygen radical production.  相似文献   

10.
Glutamate receptors are important in neural plasticity, neural development and neurodegeneration. N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors act as glutamate-gated cation channels, whereas metabotropic receptors (mGluRs) modulate the production of second messengers via G proteins. Molecular studies from our and other laboratories indicated that NMDA receptors and mGluRs exist as multiple subunits (NMDAR1 and NMDAR2A-2D) and multiple subtypes (mGluR1-mGluR8). In light of the molecular diversity of glutamate receptors, we explored the function and intracellular signaling mechanisms of different members of glutamate receptors. In the visual system, retinal bipolar cells receive glutamate transmission from photoreceptors and contribute to segregating visual signals into ON and OFF pathways. The molecularly cloned mGluR6 is restrictedly expressed at the postsynaptic site of ON-bipolar cells in both rod and cone systems. Gene targeting of mGluR6 results in a loss of ON responses without changing OFF responses and severely impairs detecting visual contrasts. Since AMPA receptors mediate OFF responses in OFF-bipolar cells, two distinct types of glutamate receptors effectively operate for ON and OFF responses. mGluR1 and mGluR5 are both coupled to inositol triphosphate (IP3)/calcium signal transduction with an identical agonist selectivity. Single-cell intracellular calcium ([Ca2+]i) recordings indicated that glutamate evokes a non-oscillatory and oscillatory [Ca2+]i response in mGluR1-expressing and mGluR5-expressing cells, respectively. This difference results from a single amino acid substitution, aspartate of mGluR1 or threonine of mGluR5, at the G protein-interacting carboxy-terminal domains. Protein kinase C phosphorylation of the threonine of mGluR5 is responsible for inducing [Ca2+]i oscillations in mGluR5-expressing cells and cultured glial cells. Thus, the two closely related mGluR subtypes mediate diverging intracellular signaling in glutamate transmission.  相似文献   

11.
The main ionotropic receptors (GABAA, NMDA and AMPA) display a sequential participation in neuronal excitation in the neonatal hippocampus. GABA, the principal inhibitory transmitter in the adult CNS, acts as an excitatory transmitter in early postnatal stage. Glutamatergic synaptic transmission is first purely NMDA-receptor based and lacks functional AMPA receptors. Therefore, initially glutamatergic synapses are 'silent' at resting membrane potential, NMDA channels being blocked by Mg2+. However, when GABA and glutamatergic synapses are coactivated during the physiological patterns of activity, GABAA receptors can facilitate the activation of NMDA receptors, playing the role conferred to AMPA receptors later on in development. Determining the mechanisms underlying the development of this 'ménage à trois' will shed light not only on the wide range of trophic roles of glutamate and GABA in the developing brain, but also on the significance of the transition from neonatal to adult forms of plasticity.  相似文献   

12.
Excitatory amino acids (EAA) acting on N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors play an important role in synaptic transmission in the spinal cord. Quantitative autoradiography and physiological experiments suggest that NMDA receptors are localized mainly in lamina II while kainate and AMPA receptors are found on both dorsal and ventral horn neurons. However the cell types expressing EAA receptors and their laminar distribution is not known. We have used a cobalt uptake method to study the morphology and distribution of spinal cord neurons expressing AMPA, kainate, or NMDA excitatory amino acid receptors in the lumbar enlargement of the rat spinal cord. The technique involved superfusion of hemisected spinal cords of 14 day-old rat pups in vitro with excitatory amino acid receptor ligands in the presence of CoCl2. Cobalt has been shown to enter cells through ligand-gated ion channels in place of Ca2+. Cells which accumulated cobalt ions following activation by ionotropic excitatory amino acid receptors were visualized histochemically. The cobalt uptake generated receptor-specific labeling of cells, as the NMDA receptor antagonist D-(-)-2-amino-(5)-phosphonovaleric acid (D-AP-5) (20 microM) blocked the NMDA, but not kainate-induced cobalt uptake. The kainate-induced cobalt labeling was reduced by the non-selective excitatory amino acid receptor antagonist kynurenic acid (4 mM). Passive opening of the voltage-gated Ca(2+)-channels by KCl (50 mM) did not result in cobalt uptake, indicating that cobalt enters the cells through ligand-gated Ca(2+)-channels. AMPA (500 microM), kainate (500 microM), or NMDA (500 microM) each induced cobalt uptake with characteristic patterns and distributions of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal perikarya while NMDA-induced uptake was the lowest. AMPA and kainate, but not NMDA superfusion, resulted in cobalt labeling of glial cells. Our results show that the cobalt uptake technique is a useful way to study the morphology and distribution of cells expressing receptors with ligand-gated Ca2+ channels.  相似文献   

13.
A microdissection technique was used to separate differentiated cortical plate (cp) cells from immature ventricular zone cells (vz) in the rat embryonic cortex. The cp population contained >85% neurons (TUJ1(+)), whereas the vz population contained approximately 60% precursors (nestin+ only). The chemotropic response of each population was analyzed in vitro, using an established microchemotaxis assay. Micromolar GABA (1-5 microM) stimulated the motility of cp neurons expressing glutamic acid decarboxylase (GAD), the rate-limiting enzyme in GABA synthesis. In contrast, femtomolar GABA (500 fM) directed a subset of GAD- vz neurons to migrate. Thus, the two GABA concentrations evoked the motility of phenotypically distinct populations derived from different anatomical regions. Pertussis toxin (PTX) blocked GABA-induced migration, indicating that chemotropic signals involve G-protein activation. Depolarization by micromolar muscimol, elevated [K+]o, or micromolar glutamate arrested migration to GABA or GABA mimetics, indicating that migration is inhibited in the presence of excitatory stimuli. These results suggest that GABA, a single ligand, can promote motility via G-protein activation and arrest attractant-induced migration via GABAA receptor-mediated depolarization.  相似文献   

14.
We used the ratioable fluorescent dye mag-fura-5 to measure intracellular free Zn2+ ([Zn2+]i) in cultured neocortical neurons exposed to neurotoxic concentrations of Zn2+ in concert with depolarization or glutamate receptor activation and identified four routes of Zn2+ entry. Neurons exposed to extracellular Zn2+ plus high K+ responded with a peak cell body signal corresponding to a [Zn2+]i of 35-45 nM. This increase in [Zn2+]i was attenuated by concurrent addition of Gd3+, verapamil, omega-conotoxin GVIA, or nimodipine, consistent with Zn2+ entry through voltage-gated Ca2+channels. Furthermore, under conditions favoring reverse operation of the Na+-Ca2+ exchanger, Zn2+ application induced a slow increase in [Zn2+]i and outward whole-cell current sensitive to benzamil-amiloride. Thus, a second route of Zn2+ entry into neurons may be via transporter-mediated exchange with intracellular Na+. Both NMDA and kainate also induced rapid increases in neuronal [Zn2+]i. The NMDA-induced increase was only partly sensitive to Gd3+ or to removal of extracellular Na+, consistent with a third route of entry directly through NMDA receptor-gated channels. The kainate-induced increase was highly sensitive to Gd3+ or Na+ removal in most neurons but insensitive in a minority subpopulation ("cobalt-positive cells"), suggesting that a fourth route of neuronal Zn2+ entry is through the Ca2+-permeable channels gated by certain subtypes of AMPA or kainate receptors.  相似文献   

15.
Cells from major types of gliomas, i.e. oligodendrogliomas and glioblastomas, are able to generate action potentials upon a current injection similar to neurons (Patt et al. (1996) Neuroscience, 71, 601-611; Labrakakis et al. (1997b) J. Neuropath. Exp. Neurol., 56, 243-254. Here, we report that activation of ionotropic glutamate receptors by the selective agonist, kainate, or by glutamate itself, depolarized the tumour cells in culture and living slices from tumour tissue, and can elicit volleys of action potentials, as recorded with the patch-clamp technique. Sixty-six percent of the glioblastoma cells, 44% of the astocytoma and 86% of the oligodendroglioma cells responded to glutamate and the specific agonist of AMPA/kainate receptors, kainate. The involvement of non-NMDA (N-methyl-D-aspartate) receptors is further supported by the observation that both kainate and glutamate currents were blocked by CNQX (6-cyano-7-nitroquinoxaline-2,3-dione). The receptor activation was accompanied by an increase in cytosolic Ca2+, as recorded with a fura-2 microfluorometric system. The Ca2+ elevation was mediated by the activation of Ca2+ channels due to membrane depolarization. The presence of voltage-gated Ca2+ channels was confirmed by patch-clamp experiments. Taken together, these findings imply that the electrophysiological properties of glioma cells are more reminiscent of those of neurons than of glial cells.  相似文献   

16.
17.
In the CNS, gamma-aminobutyric acid (GABA) affects neuronal activity through both the ligand-gated GABAA receptor channel and the G protein-coupled GABAB receptor. In the mature nervous system, both receptor subtypes decrease neural excitability, whereas in most neurons during development, the GABAA receptor increases neural excitability and raises cytosolic Ca2+ levels. We used Ca2+ digital imaging to test the hypothesis that GABAA receptor-mediated Ca2+ rises were regulated by GABAB receptor activation. In young, embryonic day 18, hypothalamic neurons cultured for 5 +/- 2 days in vitro, we found that cytosolic Ca2+ rises triggered by synaptically activated GABAA receptors were dramatically depressed (>80%) in a dose-dependent manner by application of the GABAB receptor agonist baclofen (100 nM-100 microM). Coadministration of the GABAB receptor antagonist 2-hydroxy-saclofen or CGP 35348 reduced the inhibitory action of baclofen. Administration of the GABAB antagonist alone elicited a reproducible Ca2+ rise in >25% of all synaptically active neurons, suggesting that synaptic GABA release exerts a tonic inhibitory tone on GABAA receptor-mediated Ca2+ rises via GABAB receptor activation. In the presence of tetrodotoxin the GABAA receptor agonist muscimol elicited robust postsynaptic Ca2+ rises that were depressed by baclofen coadministration. Baclofen-mediated depression of muscimol-evoked Ca2+ rises were observed in both the cell bodies and neurites of hypothalamic neurons taken at embryonic day 15 and cultured for three days, suggesting that GABAB receptors are functionally active at an early stage of neuronal development. Ca2+ rises elicited by electrically induced synaptic release of GABA were largely inhibited (>86%) by baclofen. These results indicate that GABAB receptor activation depresses GABAA receptor-mediated Ca2+ rises by both reducing the synaptic release of GABA and decreasing the postsynaptic Ca2+ responsiveness. Collectively, these data suggest that GABAB receptors play an important inhibitory role regulating Ca2+ rises elicited by GABAA receptor activation. Changes in cytosolic Ca2+ during early neural development would, in turn, profoundly affect a wide array of physiological processes, such as gene expression, neurite outgrowth, transmitter release, and synaptogenesis.  相似文献   

18.
In the present study, rundown of gamma-aminobutyric acid (GABA)-activated Cl- channels was studied in recombinant GABAA receptors stably expressed in human embryonic kidney cells (HEK 293), with conventional whole-cell and amphotericin B-perforated patch recording. When [ATP]i was lowered to 1 mM and resting [Ca++]i was buffered to a relatively high level, the response of alpha 3 beta 2 gamma 2 GABAA receptors to relatively low [GABA] (up to 50 microM) did not show rundown in the whole-cell configuration. However, high [GABA] (greater than 200 microM) induced significant rundown, which was observed by decreases in both the maximum GABA-induced current and GABA EC50. Rundown was prevented completely with a solution containing 4 mM Mg(++)-ATP and low resting [Ca++]i, or during perforated patch recording. The magnitude of rundown was comparable in alpha 1 beta 2 gamma 2 and beta 2 gamma 2 receptors. Neither stimulation nor inhibition of protein kinase A or protein kinase C had a significant effect on rundown. However, sodium metavanadate, an inhibitor of protein tyrosine phosphatase, significantly reduced rundown. In addition, inhibition of protein tyrosine kinase activity by either genistein or lavendustin A induced rundown of the GABA response. Inhibition of the Ca++/calmodulin-dependent phosphatase calcineurin with fenvalerate also prevented rundown of the response to GABA. Our results demonstrate that rundown of GABAA receptor function is concentration-dependent, due to depletion of ATP and/or unbuffered [Ca++]i, and does not depend on the presence or subtype of the alpha subunit. We propose that protein phosphorylation at a tyrosine kinase-dependent site, and a distinct unidentified site, which is dephosphorylated by calcineurin, maintains the function of GABAA receptors.  相似文献   

19.
We compared the toxin sensitivity, Ca2+ flux response and rectification properties of recombinant alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptors obtained by transfecting human embryonic kidney (HEK) 293 cells with different ratios of GluR1 and GluR2 cDNAs (10:1 to 1:10). Simultaneous measurements of kainate-activated Ca2+ fluxes and inward currents, using fura-2 microfluorimetry under voltage clamp conditions, suggested the existence of GluR2 containing channels which are permeable to Ca2+ and insensitive to Joro spider toxin (JSTx). Imaging experiments showed that JSTx inhibition of the Ca2+ response induced by kainate was reduced by increasing the relative amount of GluR2. However, even at GluR1/GluR2(R) ratios of 1:1 and 1:4, cells were still able to flux Ca2+ when stimulated by kainate. GluR2 similarly inhibited the ability of JSTx to reduce kainate-evoked inward currents in whole cell patch-clamp experiments. Variations in the rectification properties of the AMPA currents, induced by changes in the cDNA ratio, were not always correlated with the changes in toxin sensitivity and [Ca2+]i response. Thus, cells with almost linear I-V relationships were partially blocked by JSTx and still Ca2+ permeable. Our results indicate a dissociation between the toxin sensitivity and Ca2+ flux through GluR2 containing AMPA receptors and suggest that receptors with diverse Ca2+ permeabilities are generated by the expression of variable amounts of GluR2.  相似文献   

20.
The cone 'synaptic complex' is a unique structure in which a single presynaptic axon secretes glutamate onto processes of bipolar cells (both ON and OFF) and horizontal cells. In turn, the horizontal cell processes antagonize cone and bipolar responses to glutamate (probably by GABA). What still remains largely unknown is the molecular identity of the postsynaptic receptors and their exact locations. We identified several subunits of the glutamate receptor and the GABAA receptor expressed at the cone synaptic complex and localized them ultrastructurally. Glutamate receptors: (i) Invaginating (probably ON) bipolar dendrites in the monkey and rat express the metabotropic glutamate receptor, mGluR6. The stain is intense on the dendritic membrane where it first enters the invagination, and weak at the tip nearest to the ribbon. The cone membrane is electron-dense where it apposes the intense stain for mGluR6. Surprisingly, invaginating bipolar dendrites in the cat also express the AMPA receptor subunits, GluR2/3 and GluR4. (ii) Dendrites forming basal contacts in the cat (probably OFF) express the AMPA subunits GluR2/3, GluR4, and also the kainate subunit, GluR6/7. The stain is especially intense at the dendritic tips in apposition to electron-dense regions of cone membrane. (iii) Horizontal cells in the cat express the AMPA subunits GluR2/3, GluR4 and the kainate subunit, GluR6/7. The stain is strongest in the cytosol of somas and primary dendrites, but is also present in the invaginating terminals where it localizes to the membrane subjacent to the ribbon. GABAA receptors: (i) ON and OFF bipolar dendrites in the monkey express the alpha 1 and beta 2/3 subunits. The stain is localized to the bipolar cell membrane in apposition to horizontal cell processes. (ii) Cones did not express the GABAA subunits tested by immunocytochemistry, but beta 3 mRNA was amplified by RT-PCR from rat photoreceptors. Conclusions: (i) mGluR6 receptors concentrate on dendrites at the base of the invagination rather than at the apex. This implies that receptors at both 'invaginating' and 'basal' contacts lie roughly equidistant from the release sites and should therefore receive similar spatiotemporal concentrations of glutamate. (ii) The 'cone' membrane is electron-dense opposite to the receptor sites on both ON and OFF bipolar cells. This suggests a special role for this region in synaptic transmission. Possibly, these densities signify a transporter that would regulate glutamate concentration at sites remote (> 200 nm) from the locus of vesicle release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号